Sensitive SERS Characterization and Analysis of Chlorpyrifos and Aldicarb Residues in Animal Feed using Gold Nanoparticles




surface-enhanced Raman spectroscopy (SERS), nanoparticle, pesticide, chlorpyrifos, aldicarb, animal feed, food safety


The spectroscopic method based on surface-enhanced Raman spectroscopy (SERS) technique combined with chemometric methods was developed for simple, cost-effective, and efficient analysis of chlorpyrifos (CPF) and aldicarb (ALD) pesticide residues in animal feed. Animal feeds free from the pesticides were spiked at different concentrations of CPF (0-20 mg/kg) and aldicarb (0-100 µg/kg). Gold nanoparticles were mixed with sample extract for SERS measurement. A significant spectral difference induced by the presence and different level of CPF and ALD concentration in animal feed was observed between the pesticide spiking groups. Different chemometric models applied on training datasets showed excellent classification rates (100 percent) while the models on external validation dataset exhibited lower correct classification rates (50.0-76.7 percent) with no false-negative error. The selected chemometric models for CPF and ALD quantification also showed a high predictive ability and performance. The developed models displayed no statistical significant difference between model predicted and reference values in the external validation dataset (p < 0.01). The study results indicate that the SERS spectroscopic method could be an effective and efficient analytical tool for pesticide analysis in highly complex animal feed matrices for screening at a point of sampling to improve food and feed safety.


Baron, R. L., & Merriam, T. L. (1988). Toxicology of Aldicarb. In G. W. Ware (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 105, pp. 1-70). Springer.

Bastus, N. G., Comenge, J., & Puntes, V. (2011). Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening. Langmuir, 27(17), 11098-11105.

Bowie, B. T., Chase, D. B., & Griffiths, P. R. (2000). Factors Affecting the Performance of Bench - Top Raman Spectrometers. Part I: Instrumental Effects. Applied Spectroscopy, 54(5), 164A-173A.

Broadhurst, D., Goodacre, R., Jones, A., Rowland, J. J., & Kell, D. B. (1997). Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Analytica Chimica Acta, 348(1-3), 71-86.

Chen, Z., Yongyu, L., Yankun, P., & Tianfeng, X. (2015). Detection of chlorpyrifos in apples using gold nanoparticles based on surface enhanced Raman spectroscopy. International Journal of Agricultural and Biological Engineering, 8(5), 113-120.

Choudhary, S., Yamini., Raheja, N., Yadav, S. K., Kamboj, ML., & Sharma, A. (2018). A review: Pesticide residue: Cause of many animal health problems. Journal of Entomology and Zoology Studies, 6(3), 330-333.

Craig, A. P., Franca, A. S., & Irudayaraj, J. (2013). Surface-Enhanced Raman Spectroscopy Applied to Food Safety. Annual Review of Food Science and Technology, 4, 369-380.

Cramer, R. D., III. (1993). Partial Least Squares (PLS): Its strengths and limitations. Perspectives in Drug Discovery and Design, 1, 269–278.

Delwiche, S. R., & Hareland, G. A. (2004). Detection of Scab‐Damaged Hard Red Spring Wheat Kernels by Near‐Infrared Reflectance. Cereal Chemistry, 81(5), 643-649.

Di Ottavio, F., Pelle, F. D., Montesano, C., Scarpone, R., Escarpa, A., Compagnone, D., & Sergi, M. (2017). Determination of Pesticides in Wheat Flour Using Microextraction on Packed Sorbent Coupled to Ultra-High Performance Liquid Chromatography and Tandem Mass Spectrometry. Food Analytical Methods, 10, 1699-1708.

Dowell, F. E., Pearson, T. C., Maghirang, E. B., Xie, F., & Wicklow, D. T. (2002). Reflectance and Transmittance Spectroscopy Applied to Detecting Fumonisin in Single Corn Kernels Infected with Fusarium verticillioides. Cereal Chemistry, 79(2), 222-226.

Eaton, D. L., Daroff, R. B., Autrup, H., Bridges, J., Buffler, P., Costa, L. G., Coyle, J., McKhann, G., Mobley, W. C., Nadel, L., Neubert, D., Schulte-Herrmann, R., & Spencer, P. S. (2008). Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Critical Reviews in Toxicology, 38(sup2), 1-125.

Fagnani, R., Beloti, V., Battaglini, A. P., Dunga, K. D., & Tamanini, R. (2011). Organophosphorus and carbamates residues in milk and feedstuff supplied to dairy cattle. Pesquisa Veterinaria Brasileira, 31(7), 598-602.

Fan, M., Andrade, G. F. S., & Brolo, A. G. (2011). A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta, 693(1-2), 7-25.

Fernandez-Alvarez, M., Llompart, M., Lamas, J. P., Lores, M., Garcia-Jares, C., Cela, R., & Dagnac, T. (2008). Simultaneous determination of traces of pyrethroids, organochlorines and other main plant protection agents in agricultural soils by headspace solid-phase microextraction–gas chromatography. Journal of Chromatography A, 1188(2), 154-163.

Garrido-Frenich, A., Arrebola, F. J., Gonzalez-Rodriguez, M. J., Vidal, J. M., & Diez, N. M. M. (2003). Rapid pesticide analysis, in post-harvest plants used as animal feed, by low-pressure gas chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 377(6), 1038-1046.

Gautam, R., Vanga, S., Ariese, F., & Umapathy, S. (2015). Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Techniques and Instrumentation, 2(8).

Gonzalez-Curbelo, M. A., Herrera-Herrera, A. V., Ravelo-Perez, L. M., & Hernandez-Borges, J. (2012). Sample-preparation methods for pesticide-residue analysis in cereals and derivatives. TrAC Trends in Analytical Chemistry, 38, 32-51.

Huang, S., Hu, J., Liu, M., Wu, R., & Wang, X. (2017). Density Functional Theory Calculation and Raman Spectroscopy Studies of Carbamate Pesticides (in Chinese). Guang Pu Xue Yu Guang Pu Fen Xi, 37(3).

Johnson, D. E. (1998). Discriminant analysis. In D. E. Johnson (Ed.), Applied Multivariate Methods for Data Analyst (pp. 217-285). Duxbury Press.

Kan, C. A., & Meijer, G. A. L. (2007). The risk of contamination of food with toxic substances present in animal feed. Animal Feed Science and Technology, 133(1/2), 84-108.

Kim, A., Barcelo, S. J., & Li, Z. (2014). SERS-based pesticide detection by using nanofinger sensors. Nanotechnology, 26(1), 015502.

Kim, J., Hwang, J., & Chung, H. (2008). Comparison of near-infrared and Raman spectroscopy for on-line monitoring of etchant solutions directly through a Teflon tube. Analytica Chimica Acta, 629(1-2), 119-127.

Kos, G., Lohninger, H., Mizaikoff, B., & Krska, R. (2007). Optimisation of a sample preparation procedure for the screening of fungal infection and assessment of deoxynivalenol content in maize using mid-infrared attenuated total reflection spectroscopy. Food Additives and Contaminants, 24(7), 721-729.

Lee, K-M., Armstrong, P. R., Thomasson, J. A., Sui, R., Casada, M., & Herrman, T. J. (2010). Development and Characterization of Food-Grade Tracers for the Global Grain Tracing and Recall System. Journal of Agricultural and Food Chemistry, 58(20), 10945-10957.

Lee, K-M., & Herrman, T. J. (2016). Determination and Prediction of Fumonisin Contamination in Maize by Surface–Enhanced Raman Spectroscopy (SERS). Food and Bioprocess Technology, 9, 588-603.

Lee, K-M., Herrman, T. J., Bisrat, Y., & Murray, S. C. (2014). Feasibility of Surface-Enhanced Raman Spectroscopy for Rapid Detection of Aflatoxins in Maize. Journal of Agricultural and Food Chemistry, 62(19), 4466-4474.

Leeman, W. R., Van Den Berg, K. J., & Houben, G. F. (2007). Transfer of chemicals from feed to animal products: The use of transfer factors in risk assessment. Food Additives and Contaminants, 24(1), 1-13.

Liu, Y., & Liu, T. (2010). Determination of Pesticide Residues on the Surface of Fruits Using Micro-Raman Spectroscopy. In D. Li, Y. Liu, & Y. Chen (Eds.), Computer and Computing Technologies in Agriculture IV. CCTA 2010. IFIP Advances in Information and Communication Technology (Vol. 347, pp. 427-434). Springer.

Medina-Dzul, K., Munoz-Rodriguez, D., Moguel-Ordonez, Y., & Carrera-Figueiras, C. (2014). Application of mixed solvents for elution of organophosphate pesticides extracted from raw propolis by matrix solid-phase dispersion and analysis by GC-MS. Chemical Papers, 68, 1474-1481.

Mol, H. G., Plaza-Bolanos, P., Zomer, P., de Rijk, T. C., Stolker, A. A., & Mulder, P. P. (2008). Toward a generic extraction method for simultaneous determination of pesticides, mycotoxins, plant toxins, and veterinary drugs in feed and food matrixes. Analytical Chemistry, 80(24), 9450-9459.

Moros, J., Garrigues, S., & de la Guardia, M. (2010). Vibrational spectroscopy provides a green tool for multi-component analysis. TrAC Trends in Analytical Chemistry, 29(7), 578-591.

Moye, H. A., & Miles, C. J. (1988). Aldicarb Contamination of Groundwater. In G. W. Ware (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 105, pp. 99-146). Springer.

Nansen, C., Kolomiets, J., & Gao, X. (2008). Considerations Regarding the Use of Hyperspectral Imaging Data in Classifications of Food Products, Exemplified by Analysis of Maize Kernels. Journal of Agricultural and Food Chemistry, 56(9), 2933-2938.

Nie, S., & Emory, S. R. (1997). Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 275(5303), 1102-1106.

Osborne, B. G., Fearn, T., & Hindle, P. H. (1993). Near infrared calibration II. In B. G. Osborne, T. Fearn, & P. T. Hindle (Eds.), Practical NIR Spectroscopy with Applications in Food and Beverage Analysis (pp. 121-144). Longman Scientific & Technical.

Otto, A. J. (1991). Surface‐enhanced Raman scattering of adsorbates. Journal of Raman Spectroscopy, 22(12), 743-752.

Pang, S., Yang, T., & He, L. (2016). Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry, 85(Part A), 73-82.

Risher, J. F., Mink, F. L., & Stara, J. F. (1987). The toxicologic effects of the carbamate insecticide aldicarb in mammals: a review. Environmental Health Perspectives, 72, 267-281.

Roggo, Y., Chalus, P., Maurer, L., Lema-Martinez, C., Edmond, A., & Jent, N. (2007). A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. Journal of Pharmaceutical and Biomedical Analysis, 44(3), 683-700.

Shende, C., Gift, A., Inscore, F., Maksymiuk, P., & Farquharson, S. (2004). Inspection of pesticide residues on food by surface-enhanced Raman spectroscopy. In G. E. Meyer, B. S. Bennedsen, Y-R. Chen, S-I Tu, A. G. Senecal (Eds.), Monitoring Food Safety, Agriculture, and Plant Health (Vol. 5271, pp. 28-34). International Society for Optics and Photonics.

Smith, E., & Dent, G. (2005). Introduction, Basic Theory and Principles. In E. Smith & G. Dent (Eds.), Modern Raman Spectroscopy: A Practical Approach, First Edition (pp.1-21). John Wiley & Sons Ltd.

Sohn, M., Himmelsbach, D. S., & Barton, F. E., II. (2004). A Comparative Study of Fourier Transform Raman and NIR Spectroscopic Methods for Assessment of Protein and Apparent Amylose in Rice. Cereal Chemistry, 81(4), 429-433.

Stepan, R., Ticha, J., Hajslova, J., Kovalczuk, T., & Kocourek, V. (2005). Baby food production chain: Pesticide residues in fresh apples and products. Food Additives and Contaminants, 22(12), 1231-1242.

Sun, X., & Li, H. (2016). A Review: Nanofabrication of Surface-Enhanced Raman Spectroscopy (SERS) Substrates. Current Nanoscience, 12(2), 175-183.

Tang, H., Fang, D., Li, Q., Cao, P., Geng, J., Sui, T., Wang, X., Iqbal, J., & Du, Y. (2012). Determination of Tricyclazole Content in Paddy Rice by Surface Enhanced Raman Spectroscopy. Journal of Food Science, 77(5), T105-T109.

U.S. Environmental Protection Agency. (n.d.). Regulation of Pesticide Residues on Food. Retrieved November 11, 2019 from

Verma, H. N., Singh, P., & Chavan, R. M. (2014). Gold nanoparticle: synthesis and characterization. Veterinary World, 7(2), 72-77.

Walorczyk, S. (2007). Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography-triple quadrupole tandem mass spectrometry. Journal of Chromatography A, 1165(1-2), 200-212.

Wang, Y., Lee, K., & Irudayaraj, J. (2010). Silver Nanosphere SERS Probes for Sensitive Identification of Pathogens. The Journal of Physical Chemistry C, 114(39), 16122-16128.

Watanabe, E., Miyake, S., & Yogo, Y. (2013). Review of Enzyme-Linked Immunosorbent Assays (ELISAs) for Analyses of Neonicotinoid Insecticides in Agro-environments. Journal of Agricultural and Food Chemistry, 61(51), 12459-12472.

Xu, M-L., Gao, Y., Han, X. X., & Zhao, B. (2017). Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. Journal of Agricultural and Food Chemistry, 65(32), 6719-6726.

Yuan, W., Ho, H. P., Lee, R. K. Y., & Kong, S. K. (2009). Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates. Applied Optics, 48(22), 4329-4337.

Zeisel, D., Deckert, V., Zenobi, R., & Vo-Dinh, T. (1998). Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chemical Physics Letters, 283(5-6), 381-385.

Zhao, L., Jiang, D., Cai, Y., Ji, X., Xie, R., & Yang, W. (2012). Tuning the size of gold nanoparticles in the citrate reduction by chloride ions. Nanoscale, 4(16), 5071-5076.






Scientific Articles

How to Cite

Sensitive SERS Characterization and Analysis of Chlorpyrifos and Aldicarb Residues in Animal Feed using Gold Nanoparticles. (2020). Journal of Regulatory Science, 8, 1-14.

Most read articles by the same author(s)