Portable Spectroscopy for Food Safety and Adulteration Screening

Authors

  • Joshua Moskowitz University of Maryland, Joint Institute for Food Safety and Applied Nutrition, 2134 Patapsco Building, College Park, MD 20742
  • Betsy Jean Yakes

DOI:

https://doi.org/10.21423/JRS.REGSCI.102257

Keywords:

Portable Spectrosocopy, Food Safety, Food Adulteration

Abstract

In this review we discuss various applications of portable vibrational spectroscopy in food adulteration analyses and authentication confirmation. These applications generally involve the adulteration of a food product with materials which may be of lesser monetary value and may also be detrimental to human health. Portable spectroscopic testing for food authentication opens potential for rapid and on-site analyses of food products at various stages in the food production chain. These portable techniques also require the development of data analysis methods for each individual application, which will also be discussed in this review. Specific food safety applications for portable spectroscopy to be discussed include adulteration detection and evaluation of authenticity. Adulteration detection examples focus on the commonly adulterated milk powder and spice commodities, as well as the potential for component substitution (e.g., artificial sweeteners). For authentication, examples from marine oil dietary supplements, olive oils, honeys, coffees, and grains are presented along with examples of speciation (e.g. fish) and growth conditions (bell peppers).

References

References

absorption of fish oils and concentrates. Lipids, 27(11), 858-862. doi:10.1007/BF02535864

Alain, M., Antoon, L., Valentina, P., Georgios, K., Beatriz de la, C., Linda, G., . . . Ulberth, F. (2021). Results of an EU wide coordinated control plan to establish the prevalence of fraudulent practices in the marketing of herbs and spices. 30877.

Armenta, S., Garrigues, S., & de la Guardia, M. (2004). Sweeteners determination in table top formulations using FT-Raman spectrometry and chemometric analysis. Analytica chimica acta, 521(2), 149-155. doi:10.1016/j.aca.2004.05.077

Aykas, D. P., Shotts, M.-L., & Rodriguez-Saona, L. E. (2020). Authentication of commercial honeys based on Raman fingerprinting and pattern recognition analysis. Food control, 117, 107346. doi:10.1016/j.foodcont.2020.107346

Beć, K. B., Grabska, J., & Huck, C. W. (2021). Principles and Applications of Miniaturized Near‐Infrared (NIR) Spectrometers. Chemistry : a European journal, 27(5), 1514-1532. doi:10.1002/chem.202002838

Beghi, R., Spinardi, A., Bodria, L., Mignani, I., & Guidetti, R. (2012). Apples Nutraceutic Properties Evaluation Through a Visible and Near-Infrared Portable System. Food and bioprocess technology, 6(9), 2547-2554. doi:10.1007/s11947-012-0824-7

Bergamo, A. B., Fracassi da Silva, J. A., & de Jesus, D. P. (2011). Simultaneous determination of aspartame, cyclamate, saccharin and acesulfame-K in soft drinks and tabletop sweetener formulations by capillary electrophoresis with capacitively coupled contactless conductivity detection. Food chemistry, 124(4), 1714-1717. doi:10.1016/j.foodchem.2010.07.107

Cayuela, J. A., & Weiland, C. (2010). Intact orange quality prediction with two portable NIR spectrometers. Postharvest biology and technology, 58(2), 113-120. doi:10.1016/j.postharvbio.2010.06.001

Correia, R. M., Loureiro, L. B., Rodrigues, R. R. T., Costa, H. B., Oliveira, B. G., Filgueiras, P. R., . . . Romao, W. (2016). Chemical profiles of Robusta and Arabica coffee by ESI(-)FT-ICR MS and ATR-FTIR: a quantitative approach. Analytical methods, 8(42), 7678-7688. doi:10.1039/c6ay02501c

Correia, R. M., Tosato, F., Domingos, E., Rodrigues, R. R. T., Aquino, L. F. M., Filgueiras, P. R., . . . Romão, W. (2018). Portable near infrared spectroscopy applied to quality control of Brazilian coffee. Talanta (Oxford), 176, 59-68. doi:10.1016/j.talanta.2017.08.009

Crocombe, R. A. (2018). Portable Spectroscopy. Applied spectroscopy, 72(12), 1701-1751. doi:10.1177/0003702818809719

Davey, M. W., Saeys, W., Hof, E., Ramon, H., Swennen, R. L., & Keulemans, J. (2009). Application of Visible and Near-Infrared Reflectance Spectroscopy (Vis/NIRS) to Determine Carotenoid Contents in Banana (Musa spp.) Fruit Pulp. Journal of agricultural and food chemistry, 57(5), 1742-1751. doi:10.1021/jf803137d

de Almeida, M. R., de Sá Oliveira, K., Stephani, R., & Cappa de Oliveira, L. F. (2012). Application of FT-Raman Spectroscopy and Chemometric Analysis for Determination of Adulteration in Milk Powder. Analytical letters, 45(17), 2589-2602. doi:10.1080/00032719.2012.698672

Defernez, M., Wren, E., Watson, A. D., Gunning, Y., Colquhoun, I. J., Le Gall, G., . . . Kemsley, E. K. (2017). Low-field 1H NMR spectroscopy for distinguishing between arabica and robusta ground roast coffees. Food chemistry, 216, 106-113. doi:10.1016/j.foodchem.2016.08.028

Domingo, E., Tirelli, A. A., Nunes, C. A., Guerreiro, M. C., & Pinto, S. M. (2014). Melamine detection in milk using vibrational spectroscopy and chemometrics analysis: A review. Food research international, 60, 131-139. doi:10.1016/j.foodres.2013.11.006

dos Santos, C. A. T., Lopo, M., Páscoa, R. N. M. J., & Lopes, J. A. (2013). A Review on the Applications of Portable Near-Infrared Spectrometers in the Agro-Food Industry. Applied spectroscopy, 67(11), 1215-1233. doi:10.1366/13-07228

Ebrahimi-Najafabadi, H., Leardi, R., Oliveri, P., Chiara Casolino, M., Jalali-Heravi, M., & Lanteri, S. (2012). Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques. Talanta (Oxford), 99, 175-179. doi:10.1016/j.talanta.2012.05.036

Escuredo, O., Rodríguez-Flores, M. S., Meno, L., & Seijo, M. C. (2021). Prediction of Physicochemical Properties in Honeys with Portable Near-Infrared (microNIR) Spectroscopy Combined with Multivariate Data Processing. Foods, 10(2), 317. doi:10.3390/foods10020317

European Commission JRC food fraud monthly report. (2017). Retrieved from https://knowledge4policy.ec.europa.eu/sites/default/files/jrc-food-fraud-summary-may-2017.pdf

Fu, X., He, X., Xu, H., & Ying, Y. (2016). Nondestructive and Rapid Assessment of Intact Tomato Freshness and Lycopene Content Based on a Miniaturized Raman Spectroscopic System and Colorimetry. Food analytical methods, 9(9), 2501-2508. doi:10.1007/s12161-016-0440-7

Galvin-King, P., Haughey, S. A., & Elliott, C. T. (2018). Herb and spice fraud; the drivers, challenges and detection. Food control, 88, 85-97. doi:10.1016/j.foodcont.2017.12.031

Grassi, S., Casiraghi, E., & Alamprese, C. (2018). Handheld NIR device: A non-targeted approach to assess authenticity of fish fillets and patties. Food chemistry, 243, 382-388. doi:10.1016/j.foodchem.2017.09.145

Guelpa, A., Marini, F., du Plessis, A., Slabbert, R., & Manley, M. (2017). Verification of authenticity and fraud detection in South African honey using NIR spectroscopy. Food control, 73, 1388-1396. doi:10.1016/j.foodcont.2016.11.002

Guidetti, R., Beghi, R., & Bodria, L. (2010). EVALUATION OF GRAPE QUALITY PARAMETERS BY A SIMPLE VIS/NIR SYSTEM. Transactions of the ASABE, 53(2), 477-484.

Horne, M. (2013). Milwaukee's Global Honey Scam. Retrieved from http://chinawatchcanada.blogspot.com/2013/06/high-fructose-corn-syrup-infused-honey.html

Jacquet, J. L., & Pauly, D. (2008). Trade secrets: Renaming and mislabeling of seafood. Marine policy, 32(3), 309-318. doi:10.1016/j.marpol.2007.06.007

Jing, K., Wu, T., & Lim, K. (2013). Omega-3 Polyunsaturated Fatty Acids and Cancer. Anti-cancer agents in medicinal chemistry, 13(8), 1162-1177. doi:10.2174/18715206113139990319

Kar, S., Tudu, B., Bag, A. K., & Bandyopadhyay, R. (2017). Application of Near-Infrared Spectroscopy for the Detection of Metanil Yellow in Turmeric Powder. Food analytical methods, 11(5), 1291-1302. doi:10.1007/s12161-017-1106-9

Karunathilaka, S. R., Choi, S. H., Mossoba, M. M., Yakes, B. J., Brückner, L., Ellsworth, Z., & Srigley, C. T. (2019). Rapid classification and quantification of marine oil omega-3 supplements using ATR-FTIR, FT-NIR and chemometrics. Journal of food composition and analysis, 77, 9-19. doi:10.1016/j.jfca.2018.12.009

Karunathilaka, S. R., Yakes, B. J., Choi, S. H., Brückner, L., & Mossoba, M. M. (2020). Comparison of the Performance of Partial Least Squares and Support Vector Regressions for Predicting Fatty Acids and Fatty Acid Classes in Marine Oil Dietary Supplements by Using Vibrational Spectroscopic Data. Journal of food protection, 83(5), 881-889. doi:10.4315/JFP-19-563

Karunathilaka, S. R., Yakes, B. J., Farris, S., Michael, T. J., He, K., Chung, J. K., . . . Mossoba, M. M. (2017). Quantitation of Saccharin and Cyclamate in Tabletop Formulations by Portable Raman and NIR Spectrometers in Combination with Partial Least Squares Regression. Food analytical methods, 11(4), 969-979. doi:10.1007/s12161-017-1057-1

Karunathilaka, S. R., Yakes, B. J., He, K., Chung, J. K., & Mossoba, M. (2018). Non-targeted NIR spectroscopy and SIMCA classification for commercial milk powder authentication: A study using eleven potential adulterants. Heliyon, 4(9), e00806-e00806. doi:10.1016/j.heliyon.2018.e00806

Killeen, D. P., Card, A., Gordon, K. C., & Perry, N. B. (2020). First Use of Handheld Raman Spectroscopy to Analyze Omega-3 Fatty Acids in Intact Fish Oil Capsules. Applied spectroscopy, 74(3), 365-371. doi:10.1177/0003702819877415

Limm, W., Karunathilaka, S. R., Yakes, B. J., & Mossoba, M. M. (2018). A portable mid-infrared spectrometer and a non-targeted chemometric approach for the rapid screening of economically motivated adulteration of milk powder. International dairy journal, 85, 177-183. doi:10.1016/j.idairyj.2018.06.005

Llamas, N. E., Di Nezio, M. S., Palomeque, M. E., & Fernández Band, B. S. (2008). Direct Determination of Saccharin and Acesulfame-K in Sweeteners and Fruit Juices Powders. Food analytical methods, 1(1), 43-48. doi:10.1007/s12161-007-9006-z

Luykx, D. M. A. M., Cordewener, J. H. G., Ferranti, P., Frankhuizen, R., Bremer, M. G. E. G., Hooijerink, H., & America, A. H. P. (2007). Identification of plant proteins in adulterated skimmed milk powder by high-performance liquid chromatography—mass spectrometry. Journal of Chromatography A, 1164(1), 189-197. doi:10.1016/j.chroma.2007.07.017

MacMahon, S., Begley, T. H., Diachenko, G. W., & Stromgren, S. A. (2012). A liquid chromatography–tandem mass spectrometry method for the detection of economically motivated adulteration in protein-containing foods. Journal of Chromatography A, 1220, 101-107. doi:10.1016/j.chroma.2011.11.066

Maraboli, A., Cattaneo, T. M. P., & Giangiacomo, R. (2002). Detection of Vegetable Proteins from Soy, Pea and Wheat Isolates in Milk Powder by near Infrared Spectroscopy. Journal of near infrared spectroscopy (United Kingdom), 10(1), 63-69. doi:10.1255/jnirs.322

McGrath, T. F., Haughey, S. A., Islam, M., Elliott, C. T., Kelly, S. D., Suman, M., . . . Handagiripathira, H. M. N. L. (2021). The potential of handheld near infrared spectroscopy to detect food adulteration: Results of a global, multi-instrument inter-laboratory study. Food chemistry, 353, 128718. doi:10.1016/j.foodchem.2020.128718

McVey, C., Elliott, C. T., Cannavan, A., Kelly, S. D., Petchkongkaew, A., & Haughey, S. A. (2021). Portable spectroscopy for high throughput food authenticity screening: Advancements in technology and integration into digital traceability systems. Trends in food science & technology, 118, 777-790. doi:10.1016/j.tifs.2021.11.003

McVey, C., McGrath, T. F., Haughey, S. A., & Elliott, C. T. (2021). A rapid food chain approach for authenticity screening: The development, validation and transferability of a chemometric model using two handheld near infrared spectroscopy (NIRS) devices. Talanta (Oxford), 222, 121533-121533. doi:10.1016/j.talanta.2020.121533

Mignani, A. G., Ciaccheri, L., Mencaglia, A. A., Verschooten, T., Ottevaere, H., & Thienpont, H. (2014). Raman Spectroscopy for Distinguishing the Composition of Table-top Artificial Sweeteners. Procedia engineering, 87, 240-243. doi:10.1016/j.proeng.2014.11.634

Moore, J. C., Spink, J., & Lipp, M. (2012). Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. Journal of food science, 77(4), R118-R126. doi:10.1111/j.1750-3841.2012.02657.x

Müller-Maatsch, J., & Ruth, v. S. M. (2021). Handheld devices for food authentication and their applications : A review. Foods, 10(12), 2901. doi:10.3390/foods10122901

Nordoy, A., Barstad, L., Connor, W. E., & Hatcher, L. (1991). ABSORPTION OF THE N-3 EICOSAPENTAENOIC AND DOCOSAHEXAENOIC ACIDS AS ETHYL-ESTERS AND TRIGLYCERIDES BY HUMANS. The American journal of clinical nutrition, 53(5), 1185-1190. doi:10.1093/ajcn/53.5.1185

O'Brien, N., Hulse, C. A., Pfeifer, F., & Siesler, H. W. (2013). Near Infrared Spectroscopic Authentication of Seafood. Journal of near infrared spectroscopy (United Kingdom), 21(4), 299-305. doi:10.1255/jnirs.1063

Oliveira, M. M., Cruz-Tirado, J. P., Roque, J. V., Teófilo, R. F., & Barbin, D. F. (2020). Portable near-infrared spectroscopy for rapid authentication of adulterated paprika powder. Journal of food composition and analysis, 87, 103403. doi:10.1016/j.jfca.2019.103403

Oliveira, R. C. S., Oliveira, L. S., Franca, A. S., & Augusti, R. (2009). Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley. Journal of food composition and analysis, 22(3), 257-261. doi:10.1016/j.jfca.2008.10.015

Olmsted, L. (2016). Real Food/Fake Food: Why You Don't Know What You're Eating and What You Can Do about It. New York: Algonquin Books of Chapel Hill.

Paradkar, M. M., & Irudayaraj, J. (2002). Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy. Food chemistry, 76(2), 231-239. doi:10.1016/S0308-8146(01)00292-8

Plans, M., Wenstrup, M. J., & Rodriguez-Saona, L. E. (2015). Application of Infrared Spectroscopy for Characterization of Dietary Omega-3 Oil Supplements. Journal of the American Oil Chemists' Society, 92(7), 957-966. doi:10.1007/s11746-015-2666-8

Popping, B., & Diaz-Amigo, C. (2021). A Paradigm Shift: From "Sample to Laboratory" to "Laboratory to Sample". Journal of AOAC International, 104(1), 1-6. doi:10.1093/jaoacint/qsaa091

Prodolliet, J., Bruelhart, M., Blanc, M. B., Leloup, V., Cherix, G., Donnelly, C. M., & Viani, R. (1995). Adulteration of soluble coffee with coffee husks and parchments. Journal of AOAC International, 78(3), 761-767. doi:10.1093/jaoac/78.3.761

Rodriguez-Saona, L. E., Giusti, M. M., & Shotts, M. (2016). 4 - Advances in Infrared Spectroscopy for Food Authenticity Testing. In (pp. 71-116): Elsevier Ltd.

Rubayiza, A. B., & Meurens, M. (2005). Chemical Discrimination of Arabica and Robusta Coffees by Fourier Transform Raman Spectroscopy. Journal of agricultural and food chemistry, 53(12), 4654-4659. doi:10.1021/jf0478657

Rukundo, I. R., & Danao, M.-G. C. (2020). Identifying Turmeric Powder by Source and Metanil Yellow Adulteration Levels Using Near-Infrared Spectra and PCA-SIMCA Modeling. Journal of food protection, 83(6), 968-974. doi:10.4315/JFP-19-515

Sánchez, M. T., Torres, I., de la Haba, M. J., Chamorro, A., Garrido‐Varo, A., & Pérez‐Marín, D. (2019). Rapid, simultaneous, and in situ authentication and quality assessment of intact bell peppers using near‐infrared spectroscopy technology. Journal of the science of food and agriculture, 99(4), 1613-1622. doi:10.1002/jsfa.9342

Saravanan, P. D., Davidson, N. C. M. D., Schmidt, E. B. P., & Calder, P. C. P. (2010). Cardiovascular effects of marine omega-3 fatty acids. The Lancet (British edition), 376(9740), 540-550. doi:10.1016/S0140-6736(10)60445-X

Scholl, P. F., Farris, S. M., & Mossoba, M. M. (2014). Rapid Turbidimetric Detection of Milk Powder Adulteration with Plant Proteins. Journal of agricultural and food chemistry, 62(7), 1498-1505. doi:10.1021/jf405617f

Shah, R., Farris, S., De Jager, L. S., & Begley, T. H. (2015). A novel method for the simultaneous determination of 14 sweeteners of regulatory interest using UHPLC-MS/MS. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 32(2), 141-151. doi:10.1080/19440049.2014.994111

Shotts, M.-L., Plans Pujolras, M., Rossell, C., & Rodriguez-Saona, L. (2018). Authentication of indigenous flours (Quinoa, Amaranth and kañiwa) from the Andean region using a portable ATR-Infrared device in combination with pattern recognition analysis. Journal of cereal science, 82, 65-72. doi:10.1016/j.jcs.2018.04.005

Sidhu, K. S. (2003). Health benefits and potential risks related to consumption of fish or fish oil. Regulatory toxicology and pharmacology, 38(3), 336-344. doi:10.1016/j.yrtph.2003.07.002

Śliwińska-Bartel, M., Burns, D. T., & Elliott, C. (2021). Rice fraud a global problem: A review of analytical tools to detect species, country of origin and adulterations. Trends in food science & technology, 116, 36-46. doi:10.1016/j.tifs.2021.06.042

Teye, E., Amuah, C. L. Y., McGrath, T., & Elliott, C. (2019). Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 217, 147-154. doi:10.1016/j.saa.2019.03.085

Vargas Jentzsch, P., Torrico-Vallejos, S., Mendieta-Brito, S., Ramos, L. A., & Ciobotă, V. (2016). Detection of counterfeit stevia products using a handheld Raman spectrometer. Vibrational spectroscopy, 83, 126-131. doi:10.1016/j.vibspec.2016.01.015

Warner, K., Timme, W., Lowell, B., & Hirshfield, M. (2013). Oceana Study Reveals Seafood Fraud Nationwide Retrieved from https://oceana.org/reports/oceana-study-reveals-seafood-fraud-nationwide/

Yakes, B. J., Karunathilaka, S. R., Choi, S. H., Lee, K., Lea Brückner, Srigley, C., & Mossoba, M. (2018). Portable Raman spectroscopy and chemometric methods for the analysis of marine oil dietary supplements. In (Vol. 29 (5), pp. 24-25). INFORM International News on Fats, Oils, and Related Materials: AOCS.

Yan, J., Erasmus, S. W., Aguilera Toro, M., Huang, H., & van Ruth, S. M. (2020). Food fraud: Assessing fraud vulnerability in the extra virgin olive oil supply chain. Food control, 111, 107081. doi:10.1016/j.foodcont.2019.107081

Yan, J., Stuijvenberg, v. L., & Ruth, v. S. M. (2019). Handheld Near-Infrared Spectroscopy for Distinction of Extra Virgin Olive Oil from Other Olive Oil Grades Substantiated by Compositional Data. European journal of lipid science and technology, 121(12), 1900031-n/a. doi:10.1002/ejlt.201900031

Zhou, X., Taylor, M. P., Salouros, H., & Prasad, S. (2018). Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Scientific reports, 8(1), 14639-14611. doi:10.1038/s41598-018-32764-w

Zou, M.-Q., Zhang, X.-F., Qi, X.-H., Ma, H.-L., Dong, Y., Liu, C.-W., . . . Wang, H. (2009). Rapid Authentication of Olive Oil Adulteration by Raman Spectrometry. Journal of agricultural and food chemistry, 57(14), 6001-6006. doi:10.1021/jf900217s

Zygler, A., Wasik, A., & Namieśnik, J. (2009). Analytical methodologies for determination of artificial sweeteners in foodstuffs. TrAC, Trends in analytical chemistry (Regular ed.), 28(9), 1082-1102. doi:10.1016/j.trac.2009.06.008

Downloads

Published

2023-02-21