This is an outdated version published on 2023-11-16. Read the most recent version.

Biomass degradation after harvest of genetically modified products compared to conventional counterparts


  • Hallison Vertuan Bayer Crop Science
  • Marcia Jose Bayer Crop Science
  • Augusto Crivellari Bayer Crop Science
  • Gustavo G. Belchior Bayer Crop Science
  • Luciana Verardino Bayer Crop Science
  • Daniel J. Soares Bayer Crop Science
  • Luiz F. Bellini Bayer Crop Science
  • Fabiana Bacalhau Bayer Crop Science
  • Marcos Barancelli Bayer Crop Science
  • Daniel Sordi Bayer Crop Science
  • Geraldo Berger Bayer Crop Science



biomass degradation, genetically modified products, environmental risk assessment, soybean, maize, cotton


Conventional breeding and modern biotechnology tools have been successfully combined over the years to generate GM crops. Single events have been crossed to generate stacked products and these combinations have proven to be an effective way to combine different gene products and associated characteristics which are agronomically relevant and result in yield increase. Regulatory agencies around the world still require risk assessment data for these products while no evidence-based additional biosafety concerns have emerged in over 20 years of global use. As part of the environmental risk assessment to evaluate the biosafety of GMOs, the Brazilian regulatory agency requests biomass degradation analyses of GM plants compared to their conventional counterparts. Here we present results on the evaluation of biomass degradation of GM and non-GM crops for soybean, maize and cotton, including single events and stacked products. Field trials were performed in representative cultivated areas in Brazil to generate biomass samples after harvest. Stalks, senescent leaves and stems after harvest were considered the biomass assessed. Collected samples were used in degradation studies conducted in a greenhouse setting from 2012 to 2019. For each product, data was subjected to analysis of variance and pairwise differences between GM and conventional counterparts were assessed with a 5% significance level. Our results show that single events and stacked products of soybean, maize and cotton presented no significant differences from their conventional counterparts for biomass degradation. This adds to the existing weight of evidence that indicates that single and stacked GM crops follow the same pattern of biomass degradation compared to conventional counterparts.


Agriculture & Food Systems Institute (2020). Global Environmental Zones Explorer. Retrieved July 2020 from

Ahmad, A., Wilde, G. E., & Zhu, K. Y. (2005). Detectability of coleopteran-specific Cry3Bb1 protein in soil and its effect on nontarget surface and below-ground arthropods. Environmental Entomology, 34(2), 385-394.

Becker, R., Bubner, B., Remus, R., Wirth, S., & Ulrich, A. (2014). Impact of multi-resistant transgenic Bt maize on straw decomposition and the involved microbial communities. Applied Soil Ecology, 739-18.

Bell, E., Nakai, S., & Burzio, L. A. (2018). Stacked Genetically Engineered Trait Products Produced by Conventional Breeding Reflect the Compositional Profiles of Their Component Single Trait Products. Journal of Agricultural and Food Chemistry, 66(29), 7794-7804.

Berman, K. H., Harrigan, G. G., Nemeth, M. A., Oliveira, W. S., Berger, G. U., & Tagliaferro, F. S. (2011). Compositional Equivalence of Insect-Protected Glyphosate-Tolerant Soybean MON 87701 x MON 89788 to Conventional Soybean Extends across Different World Regions and Multiple Growing Seasons. Journal of Agricultural and Food Chemistry, 59(21), 11643-11651.

Brookes, G. (2020). Genetically modified (GM) crop use in Colombia: farm level economic and environmental contributions. GM crops & food, 11(3), 140-153.

Brookes, G., & Barfoot, P. (2018). Environmental impacts of genetically modified (GM) crop use 1996-2016: Impacts on pesticide use and carbon emissions. Gm Crops & Food-Biotechnology in Agriculture and the Food Chain, 9(3), 109-139.

Calonego, J. C., Gil, F. C., Rocco, V. F., & dos Santos, E. A. (2012). Persistence and nutrient release from maize, brachiaria and lablab straw. Bioscience Journal, 28(5), 770-781.

Clawson, E. L., Perrett, J. J., Cheng, L. L., Ahmad, A., Stojsin, D., McGowan, Y., Diaz, O. H., Asim, M., Vertuan, H., Quddusi, M., & Soares, D. J. (2019). Consistent Risk Assessment Outcomes from Agronomic Characterization of GE Maize in Diverse Regions and as Single-Event and Stacked Products. Crop Science, 59(4), 1681-1691.

Craig, W., Tepfer, M., Degrassi, G., & Ripandelli, D. (2008). An overview of general features of risk assessments of genetically modified crops. Euphytica, 164(3), 853-880.

de Cerqueira, D. T. R., Schafer, A. C., Fast, B. J., & Herman, R. A. (2017). Agronomic performance of insect-protected and herbicide-tolerant MON 89034 x TC1507 x NK603 x DAS-40278-9 corn is equivalent to that of conventional corn. Gm Crops & Food-Biotechnology in Agriculture and the Food Chain, 8(3), 149-155.

De Schrijver, A., Devos, Y., Van den Bulcke, M., Cadot, P., De Loose, M., Reheul, D., & Sneyers, M. (2007). Risk assessment of GM stacked events obtained from crosses between GM events. Trends in Food Science & Technology, 18(2), 101-109.

de Souza, R. A., Hungria, M., Franchini, J. C., Chueire, L. M. D., Barcellos, F. G., & Campo, R. J. (2008). Quantitative and qualitative evaluations of soil microbes and biological nitrogen fixation in soybean. Pesquisa Agropecuaria Brasileira, 43(1), 71-82.

de Souza, W. R. (2013). Microbial degradation of lignocellulosic biomass. Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization, pp. 207-247.

Díaz, O. H., Meza, J. L. A., Baltazar, B. M., Bojórquez, G. B., Espinoza, L. C., Madrid, J. L. C., de la Fuente Martínez, J. M., Pompa, H. A. D., Escobedo, J. A., & Banda, A. E. (2017). Plant characterization of genetically modified maize hybrids MON-89Ø34-3× MON-88Ø17-3, MON-89Ø34-3× MON-ØØ6Ø3-6, and MON-ØØ6Ø3-6: alternatives for maize production in Mexico. Transgenic research, 26(1), 135-151. DOI 10.1007/s11248-016-9991-z

Dubelman, S., Ayden, B. R., Bader, B. M., Brown, C. R., Jiang, C., & Vlachos, D. (2005). Cry1Ab protein does not persist in soil after 3 years of sustained Bt corn use. Environmental Entomology, 34(4), 915-921.

Fernandes, M., de Araújo, R. P., Costa, E. N., Zangirolymo, A., Pereira, R. M., Dourados, D., & Costa, E. N. (2019). Influence of Cry1Ac toxin from Bt cotton on the soil microbiota. Journal of Agricultural Science, 11(4).

Gampala, S. S., Fast, B. J., Richey, K. A., Gao, Z. F., Hill, R., Wulfkuhle, B., Shan, G. M., Bradfisch, G. A., & Herman, R. A. (2017). Single-Event Transgene Product Levels Predict Levels in Genetically Modified Breeding Stacks. Journal of Agricultural and Food Chemistry, 65(36), 7885-7892.

Glenn, K. C., Alsop, B., Bell, E., Goley, M., Jenkinson, J., Liu, B., Martin, C., Parrott, W., Souder, C., Sparks, O., Urquhart, W., Ward, J. M., & Vicini, J. L. (2017). Bringing New Plant Varieties to Market: Plant Breeding and Selection Practices Advance Beneficial Characteristics while Minimizing Unintended Changes. Crop Science, 57(6), 2906-2921.

Goodwin, L., Hunst, P., Burzio, L., Rowe, L., Money, S., & Chakravarthy, S. (2021). Stacked Trait Products Are As Safe As Non-Genetically Modified (GM) Products Developed By Conventional Breeding Practices. Journal of Regulatory Science, 9(1), 22-25.

Gruber, H., Paul, V., Meyer, H. H. D., & Muller, M. (2012). Determination of insecticidal Cry1Ab protein in soil collected in the final growing seasons of a nine-year field trial of Bt-maize MON810. Transgenic Research, 21(1), 77-88. 10.1007/s11248-011-9509-7

Halpin, C. (2005). Gene stacking in transgenic plants - the challenge for 21st century plant biotechnology. Plant Biotechnology Journal, 3(2), 141-155.

Head, G., Surber, J. B., Watson, J. A., Martin, J. W., & Duan, J. J. (2002). No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use. Environmental Entomology, 31(1), 30-36.

Herman, R. A., Fast, B. J., Scherer, P. N., Brune, A. M., de Cerqueira, D. T., Schafer, B. W., Ekmay, R. D., Harrigan, G. G., & Bradfisch, G. A. (2017). Stacking transgenic event DAS‐Ø15Ø7‐1 alters maize composition less than traditional breeding. Plant biotechnology journal, 15(10), 1264-1272.

Icoz, I., & Stotzky, G. (2008). Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biology & Biochemistry, 40(3), 559-586.

ISAAA (2018). Brief 54: Global Status of Commercialized Biotech/GM Crops: 2018. Retrieved June 2020 from

James, C. (2010). A global overview of biotech (GM) crops: adoption, impact and future prospects. GM crops, 1(1), 8-12.

Joaquim, M. E. S., Belchior, G. G., Jose, M., Zapata, F., Jiang, C. J., Fischer, J., & Berger, G. U. (2019). Dissipation of DvSnf7 Double-Stranded RNA in Brazilian Soils. Agricultural & Environmental Letters, 4(1).

Jose, M., Vertuan, H., Soares, D., Sordi, D., Bellini, L. F., Kotsubo, R., & Berger, G. U. (2020). Comparing agronomic and phenotypic plant characteristics between single and stacked events in soybean, maize, and cotton. Plos One, 15(4).

Kramer, C., Brune, P., McDonald, J., Nesbitt, M., Sauve, A., & Storck-Weyhermueller, S. (2016). Evolution of risk assessment strategies for food and feed uses of stacked GM events. Plant Biotechnology Journal, 14(9), 1899-1913.

Lehman, R. M., Osborne, S. L., & Rosentrater, K. A. (2008). No differences in decomposition rates observed between Bacillus thuringiensis and non-Bacillus thuringiensis corn residue incubated in the field. Agronomy Journal, 100(1), 163-168. 10.2134/agronj2007.0123

Li, X. G., Liu, B. A., Cui, J. J., Liu, D. D., Ding, S. A., Gilna, B., Luo, J. Y., Fang, Z. X., Cao, W., & Han, Z. M. (2011). No evidence of persistent effects of continuously planted transgenic insect-resistant cotton on soil microorganisms. Plant and Soil, 339(1-2), 247-257.

Ma, B. L., Blackshaw, R. E., Roy, J., & He, T. P. (2011). Investigation on gene transfer from genetically modified corn (Zea mays L.) plants to soil bacteria. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 46(7), 590-599.

Marques, L. H., Santos, A. C., Castro, B. A., Storer, N. P., Babcock, J. M., Lepping, M. D., Sa, V., Moscardini, V. F., Rule, D. M., & Fernandes, O. A. (2018). Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil. Plos One, 13(2).

McCouch, S. (2004). Diversifying selection in plant breeding. PLoS Biol, 2(10), e347.

McDougall, P. (2011). The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. Crop Life International1-24.

Miethling-Graff, R., Dockhorn, S., & Tebbe, C. C. (2010). Release of the recombinant Cry3Bb1 protein of Bt maize MON88017 into field soil and detection of effects on the diversity of rhizosphere bacteria. European Journal of Soil Biology, 46(1), 41-48.

Raman, R. (2017). The impact of Genetically Modified (GM) crops in modern agriculture: A review. Gm Crops & Food-Biotechnology in Agriculture and the Food Chain, 8(4), 195-208.

Raybould, A., Graser, G., Hill, K., & Ward, K. (2012). Ecological risk assessments for transgenic crops with combined insect-resistance traits: the example of Bt11 x MIR604 maize. Journal of Applied Entomology, 136(1-2), 27-37.

Ridley, W. P., Harrigan, G. G., Breeze, M. L., Nemeth, M. A., Sidhu, R. S., & Glenn, K. C. (2011). Evaluation of Compositional Equivalence for Multitrait Biotechnology Crops. Journal of Agricultural and Food Chemistry, 59(11), 5865-5876.

Shan, G., Embrey, S. K., Herman, R. A., & McCormick, R. (2014). Cry1F protein not detected in soil after three years of transgenic Bt corn (1507 corn) use. Environmental Entomology, 37(1), 255-262.[255:CPNDIS]2.0.CO;2

Sims, S. R., & Ream, J. E. (1997). Soil inactivation of the Bacillus thuringiensis subsp kurstaki CryIIA insecticidal protein within transgenic cotton tissue: Laboratory microcosm and field studies. Journal of Agricultural and Food Chemistry, 45(4), 1502-1505.

Smyth, S. J. (2020). The human health benefits from GM crops. Plant Biotechnology Journal, 18(4), 887-888.

Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., & Glenn, K. C. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science.

Venkatesh, T. V., Breeze, M. L., Liu, K., Harrigan, G. G., & Culler, A. H. (2014). Compositional Analysis of Grain and Forage from MON 87427, an Inducible Male Sterile and Tissue Selective Glyphosate-Tolerant Maize Product for Hybrid Seed Production. Journal of Agricultural and Food Chemistry, 62(8), 1964-1973.

Vertuan, H. V., Salvadori, J. R., Oliveira, W. S., & Berger, G. U. (2017). Eficácia de tecnologias Bt no manejo de lepidópteros-praga. Revista Brasileira de Milho e Sorgo. Revista Brasileira de Milho e Sorgo, 16(1), 22-29.



2023-10-24 — Updated on 2023-11-16




Scientific Articles