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Abstract

Natural resource companies do not object to environmental regulations that are consistent and support predictability. Consistency and pre-
dictability are critical for decision making under conditions of uncertainty. Natural ecosystems are inherently variable across a broad range of
temporal and spatial scales; climate change, drought, and societal desires for sustainability make people more aware of this variability. The
science used for development and enforcement of environmental regulations has not kept pace with developments in ecological theory and the
analytical tools capable of describing, characterizing, classifying, and predicting natural ecosystems as well as distinguishing natural variability
from anthropogenic changes.

Because natural resource industries (agriculture, energy, mining) provide the base for all economic and societal activities it is critical that
environmental statutes and regulations be regularly updated to use the most technically sound and legally defensible scientific knowledge and
tools.

Mathematical models were the tools of choice when environmental statutes and regulations were introduced, perhaps because they were
successfully applied to static components of the built environment such as buildings and bridges. While their limitations for highly variable
natural ecosystems were accepted then, there is now no benefit to not replacing them with statistical models.

This paper describes limitations in policy and regulatory decision-making based on mathematical models and explains how the appropriate
statistical models avoid the subjectivity and rigidity of the former. Changing the basis of determining and justifying policy and environmental
regulations is consistent with the concepts of regulatory science applied to human health.
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1. Introduction

Natural resource companies do not object to environmen-
tal regulations that are consistent and predictable. Consistency
and predictability are critical for decision making under condi-
tions of uncertainty. Natural ecosystems are inherently variable
across a broad range of temporal and spatial scales; climate
change, drought, and societal desires for sustainability make
people more aware of this variability. The science used for de-
velopment and enforcement of environmental regulations has
not kept pace with developments in ecological theory and ana-
lytical tools capable of describing, characterizing, classifying,
and predicting natural ecosystems and distinguishing natural
variability from anthropogenic changes.

Because natural resource industries (agriculture, energy, min-
ing) provide the base for all economic and societal structures it
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is critical that environmental statutes and regulations be reg-
ularly updated to use the most technically sound and legally
defensible scientific knowledge and tools.

The origin of the term “regulatory science” is unknown.
According to Wikipedia it was likely coined sometimes in the
late 1970s in an undated memorandum prepared by A. Alan
Moghissi[1] who was describing scientific issues that the newly
formed EPA faced. During that period the EPA was forced to
meet legally mandated deadlines to make decisions, and this re-
quired reliance on science less rigorous than conventional sci-
entific development because of time constraints. One definition
of regulatory science is the application of science to support
policy, notably regulatory objectives. The Institute for Regu-
latory Science describes regulatory science as the idea that so-
cietal decisions and public communications must be based on
Best Available Science and Metrics for Evaluation of Scientific
Claims derived from it; i.e., as the scientific and technical foun-
dations upon which regulations are based. Regulatory science
is distinguished from regulatory affairs and regulatory law. The
former is focused on the regulations’ scientific underpinnings
and concerns while the latter refer to the administrative or legal
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aspects of regulation (i.e., the regulations’ promulgation, im-
plementation, compliance, and enforcement). There is growing
awareness and support of regulatory science in academia and
some federal regulatory agencies as attempts to broaden aware-
ness of this relatively new science continue (e.g., [2, 3]).

One aspect of regulatory science is how natural ecosys-
tems are modeled to characterize and classify them and to fore-
cast future states under conditions of uncertainty. With climate
change apparently accelerating, long-term drought in the west
and widespread focus on sustainability there is enough uncer-
tainty that regulatory staff rely on what has been done before
rather than to seek more appropriate methods.

When environmental regulations in the US were first written
the most common tools for analyzing complex systems such as
natural ecosystems were mathematical models1. Four of these
models still being used are described and their limitations for
use in policy-making and regulatory environments explained.

Now that abundant computing power is widely available,
and statistical models appropriate for analysis of environmental
data are abundant and available at no cost, they are the tools of
choice for supporting environmental policies and regulations.
Statistical models2 are fit to the available data, are based on
sound and proven mathematics, and when model results are
interpreted using ecological theory the results are technically
sound and legally defensible. The robustness and lack of sub-
jectivity in statistical analyses help regulators make decisions
more quickly and with confidence that the decisions are justi-
fied.

2. Analyzing Natural Environments

2.1. Mathematical models
Mathematical models grow out of equations that define how

a system changes from one state to the next (differential equa-
tions) and/or how one variable depends on the value or state of
other variables (state equations). They also can be divided into
either numerical models or analytical models[4]. The model
structure is determined by creating equations that express what
is believed to be the relationships between a response variable
and explanatory variables. Therefore, mathematical models re-
quire input data be fit to the fixed equations of the model. Of-
ten, these complex models require very large data sets as input
which are costly (in time and money) or not possible to acquire
so it is common to estimate or assume values for rates and con-
stants.

Four mathematical models commonly used to inform oper-
ational, regulatory, and policy decisions are HSPF, QUAL2E,
PITLAKQ, and BLM. The complexity and comprehensive
inclusiveness of these models require very large amounts

1In the content of this article, the mathematical models used for US envi-
ronmental regulations are deterministic models that are typically composed of
variables and relationships.

2Statistical models, while belonging to the overall category of mathemati-
cal models, are commonly distinguished from mathematical models by using
random variables with a probability distribution to represent the relationship
between observations on model states.

of data if they are to incorporate inherent natural variability.
These models are great research tools to increase understanding
of the mechanisms and dynamics of the systems they model,
but they are inappropriate for operational, regulatory, or policy
use because time and cost constraints limit the quantity of input
data and because the output is determined by the structure of
the equations.

Hydrologic Simulation Program–Fortran (HSPF)

One of the first environmental mathematical models is the
Hydrologic Simulation Program – Fortran (HSPF). The model
was developed in the early 1960’s as the Stanford Watershed
Model. In the 1970’s, water-quality processes were added. De-
velopment of a Fortran version incorporating several related
models using software engineering design and development
concepts was funded by the EPA in the late 1970’s. Develop-
ment continues by the USGS. HSPF simulates hydrologic and
associated water quality processes on pervious and impervious
land surfaces, in streams, and in well-mixed impoundments for
extended periods of time. The model contains hundreds of pro-
cess algorithms developed from theory, laboratory experiments,
and empirical relations obtained from instrumented watersheds.
Dozens of data types are required as inputs to the model.

HSPF uses continuous rainfall and other meteorologic
records to compute streamflow hydrographs and pollutographs.
The model simulates interception of soil moisture, surface
runoff, interflow, base flow, snowpack depth and water con-
tent, snowmelt, evapotranspiration, ground-water recharge, dis-
solved oxygen, biochemical oxygen demand (BOD), temper-
ature, pesticides, fecal coliforms, sediment detachment and
transport, sediment routing by particle size, channel routing,
reservoir routing, constituent routing, pH, ammonia, nitrite-
nitrate, organic nitrogen, orthophosphate, organic phosphorus,
phytoplankton, and zooplankton. The model can be configured
to simulate one or many pervious or impervious unit areas dis-
charging to one or many river reaches or reservoirs. Frequency-
duration analysis can be done for any time series. Any time step
from 1 minute to 1 day that divides equally into 1 day can be
used. Any period from a few minutes to hundreds of years may
be simulated. HSPF is generally used to assess the effects of
land-use change, reservoir operations, point or nonpoint source
treatment alternatives, flow diversions, etc. Programs, available
separately, support data preprocessing and postprocessing for
statistical and graphical analysis of data saved to the watershed
data management file.

Data requirements include meteorologic records of pre-
cipitation and estimates of potential evapotranspiration for
watershed simulation. Air temperature, dewpoint temperature,
wind, and solar radiation are required for snowmelt. Air tem-
perature, wind, solar radiation, humidity, cloud cover, tillage
practices, point sources, and (or) pesticide applications may be
required for water-quality simulation. Physical measurements
and related parameters are required to describe the land
area, channels, and reservoirs. When data are not available,
constants and rates need to be estimated by the user.
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Figure 1: The physical and chemical processes modeled by PITLAKQ

Enhanced Stream Water Quality Model (QUAL2E)

A second frequently used model is the USGS’s Enhanced
Stream Water Quality Model, QUAL2E [5]. This is a compre-
hensive one-dimensional stream water quality model. It sim-
ulates the major reactions of nutrient cycles, algal production,
benthic and carbonaceous demand, atmospheric re-aeration and
their effects on the dissolved oxygen balance. In addition, the
model includes a heat balance for computation of temperature
and mass balances for conservative minerals, coliform bacte-
ria, and non-conservative constituents such as radioactive sub-
stances. QUAL2E is intended as a water quality planning tool
for developing total maximum daily loads (TMDLs) and can
also be used in conjunction with field sampling for identifying
the magnitude and quality characteristics of nonpoint sources.
QUAL2E has been explicitly developed for steady flow and
steady wasteload conditions and is therefore a “steady state
model” although temperature and algae functions can vary on a
diurnal basis. Although the core of the model has not changed
since 1987, there have been some modifications on the inter-
faces and other associated tools to assist the users and the eval-
uation will discuss all the available versions of QUAL2E.

The conceptual representation of a stream used in the
QUAL2E formulation is a stream reach that has been divided
into a number of subreaches or computational elements equiv-
alent to finite difference elements. For each computational ele-
ment, a hydrologic balance in terms of flow, a heat balance in
terms of temperature, and a materials balance in terms of con-
centration is written. Both advective and dispersive transports
are considered in the materials balance. The model uses a finite-

difference solution of the advective-dispersive mass transport
and reaction equations and it specifically uses a special steady-
state implementation of an implicit backward difference numer-
ical scheme which gives the model an unconditional stability.

QUAL2E requires some degree of modeling sophistication
and expertise on the part of a user. The user must supply more
than 100 individual inputs, some of which require considerable
judgment to estimate. The input data can be grouped into three
categories: a stream/river system, global variables and forcing
functions. The first group, input data for the stream/river
system, describes the stream system into a format the model
can read. The general variable group describes the general
simulation variables such as units, simulation type, water
quality constituents and some physical characteristics of the
basin. The forcing functions are user-specified inputs that
drive the system being modeled. The input data values depend
on the type of simulation and the number of state variables used.

Pit Lake Hydrodynamic and Water Quality Model (PITLAKQ)

PITLAKQ couples the models CE-QUAL-W2 and
PHREEQC and adds new functionality to account for the pit
lake requirements. It includes the most important processes
in pit lakes. For example, several sources of acidity such as
erosion or release from submerged sediments and spatially
distributed groundwater inflow help to better represent pit lake
conditions. Furthermore, PITLAKQ can account for the effects
of water treatment on water quality. The two-dimensional
model setup with one vertical and one horizontal dimension
allows having sinks and sources with defined spatial locations.

PITLAKQ models hydrodynamics, transport, heat ex-
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change, wind impact, ice cover, tributary inflow, atmospheric
exchanges of O2 and CO2, precipitation, evaporation, ground-
water exchange, groundwater flow and transport, erosion
(both mass transport and water quality impacts), algae and
nutrients, chemical lake reactions, mineral precipitation,
sediment release, deliberate treatment (on defined spatial and
temporal schedules), alkalinity of sinks and sources, coupling
of all processes, and user process additions and modifications
(Figure 1)

Biotic Ligand Model (BLM)

The biotic ligand model (BLM) is a numerical model that
couples chemical speciation calculations with toxicological in-
formation to predict toxicity of an aquatic metal on a particular
species. This approach was proposed as an alternative to expen-
sive toxicological testing, and the EPA incorporated the BLM
into the 2007 revised aquatic life ambient freshwater quality
criteria for copper. Research BLMs for silver, nickle, lead,
and zinc are also available, and many other BLMs are under
development. Current BLMs are limited to “one metal, one
organism” considerations. Although the BLM generally is an
improvement over previous approaches to determining water
quality criteria, there are several challenges in implementing the
BLM, particularly at mined and mineralized sites. These chal-
lenges include: (1) historically incomplete datasets for BLM
input parameters, especially dissolved organic carbon (DOC),
(2) several concerns about DOC, such as DOC fractionation
in iron- and aluminum-rich systems and differences in DOC
quality that result in variations in metal-binding affinities, (3)
water-quality parameters and resulting metal-toxicity predic-
tions that are temporally and spatially dependent, (4) additional
influences on metal bioavailability, such as multiple-metal tox-
icity, dietary metal toxicity, and competition among organisms
or metals, (5) potential importance of metal interactions with
solid or gas phases and/or kinetically controlled reactions, and
(6) tolerance to metal toxicity observed for aquatic organisms
living in areas with elevated metal concentrations [6].

In 2015, the Oregon Department of Environmental Qual-
ity (DEQ) conducted an analysis of the copper Biotic Ligand
Model (BLM) in preparation for replacing the state’s aquatic
life water quality standard for copper based on water hardness
with a statewide adoption of the BLM. DEQ conducted this
analysis in response to EPA’s 2013 disapproval of the copper
criteria Oregon adopted in 2004. The disapproved criteria were
EPA’s 1995 nationally recommended dissolved copper criteria
for freshwater, which are dependent on the hardness of water.
The EPA 1995 copper standard is still effective in most states.
In 2007, EPA updated its national recommendation for copper,
which uses the BLM to derive freshwater aquatic life criteria.
The BLM requires 11 input parameters to derive criteria based
on site- specific water chemistry. The EPA has indicated that
Oregon’s adoption of the BLM would remedy their disapproval
action [7].

Because of the number of model input parameters, a major
objective of the Oregon DEQ analysis was to evaluate meth-
ods to estimate values for missing model inputs. A method for

estimating geochemical ion concentrations using specific con-
ductance measurements was adopted. DEQ also adopted an ap-
proach to simplify large geographic scales by combining EPA
Level-III Ecoregions into four physiographic BLM assessment
regions for evaluating potential regional estimates of BLM pa-
rameters or criteria where model data are insufficient or absent.
Unfortunately, this does not fit the generally accepted definition
of “site specific” and causes model outputs to miss inherent nat-
ural variability. There were a limited number of locations and
sampling events that had measured data for all of the required
BLM input parameters. Therefore, to derive BLM criteria, esti-
mates of missing parameters will frequently be required. Also,
DEQ’s analysis verified that BLM criteria calculations are most
sensitive to DOC and pH. Consequently, estimating values for
DOC or pH results in significant uncertainty in the accuracy of
BLM criteria. DEQ’s analysis indicates there are no routinely
collected surrogate parameters that can be used to accurately
estimate DOC or pH.

2.2. Statistical models

The descriptions of the four mathematical models reveal
common characteristics that should concern the regulated pub-
lic, consultants and attorneys who assist them in obtaining
permits and demonstrating compliance, regulators, and policy
makers. For example:

• Each requires extensive input data (a large number of
variables and many replicate values over time from each
location). This requirement works for academic and gov-
ernment scientists who can devote the time and effort to
obtain sufficient data so the model run yields non-trivial
results. But, this does not work in a regulatory context
where business needs and regulatory staff require deci-
sions in shorter time frames.

• Each of the mathematical models requires estimates or
assumptions for missing data and the spatial scales are
likely to be too large or two small for regulatory decisions
about a particular project or local population of fish.

• Each numeric model has a static structure (QUAL2E has
not changed since 1987) to which highly variable data
need to be fit. It is not surprising when it is discovered
that model output does not mach measurements and ob-
servations in the stream, river, lake, or reservoir of inter-
est.

Statistical models address concerns such as characterization
of the data (estimates of the expected value, variance, skewness,
etc.), estimation of the probabilistic future behavior of a system
based on past behavior, extrapolation or interpolation of data
based on probability, error estimation of observations, or spec-
tral analysis of data. Unlike mathematical models, the statistical
model is fit to the existing data. It is possible to try several such
models and mathematically determine which one best fits the
data.

There are two main statistical paradigms, or approaches,
and each has a role in the analysis of environmental data.
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Figure 2: Boxplots of copper concentrations from samples taken from the Humboldt and Owyhee Rivers in northeastern Nevada between 1980–2013. See the text
for interpretation of the data

The frequentist paradigm is the most familiar because it is
taught in all basic statistics courses as part of a science or busi-
ness curriculum. This paradigm is based on the expected fre-
quencies of values if the population is described by a specific
probability distribution. There are two types of frequentist anal-
ysis: null hypothesis significance testing and information theo-
retic.

The null hypothesis approach tests two hypothesis, the null
and an alternative, and calculates the probability of observing
the data or more extreme values if the null hypothesis is true.
The alternative hypothesis is not tested. The standard accep-
tance threshold is 5%; the familiar p= 0.05. Unless environ-
mental data have been suitably transformed, the null hypothesis
significance testing approach has limited use with environmen-
tal data. When the probability is greater than 0.05 the null hy-
pothesis is not accepted but only not rejected. The information-
theoretic approach uses maximum likelihood estimation (MLE)
to evaluate which of multiple hypotheses is best fit by the data.
The MLE approach provides greater flexibility than does the
frequentist approach in analyzing environmental data. Neither
type of null hypothesis significance testing can answer ques-
tions about biological data, such as calculating the probability

of a species being present at a habitat regardless of being ob-
served there on any given site visit.

The Bayesian paradigm incorporates existing knowledge
into the prediction of future conditions. While this might seem
counter-intuitive or flaky it is a robust approach well suited
to many environmental data sets, particularly biological ones.
Perhaps it is more easily accepted when we understand that
we subjectively use this approach to make decisions about our
actions. We fish and hunt where we have been successful in
the past and we select commuting routes and times to avoid
congestion and delays we have experienced in the past. What
Thomas Bayes did was to put this knowledge in a mathematical
probability format.

Data characterization

The first thing the environmental data analyst does with a
data set is to describe and characterize it visually and numer-
ically. Environmental data differ from business, financial, and
social data that are often statistically analyzed. Therefore, en-
vironmental data characterization is needed to determine both
what further analyses can validly be done and which models
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best fit the data.
Geochemical data in water, sediments, soils, and rocks are

continuous data with true zeros but they are not normally dis-
tributed. That is, the familiar bell-shaped curve cannot describe
their possible values. Chemical concentrations cannot be less
than 0.0 (regardless of units of measure), frequently have long
tails on the right side from infrequent high values, and can have
values below laboratory detection limits. They also tend to be
collected at irregular periods. Geochemical data represent parts
of a whole which is expressed in the units used to describe their
concentration in a medium: mg/L (milligrams per liter), ppm
(parts per million), ppb (parts per billion), and similar. Biologic
data are either integer counts or presence-absence records.

The most useful visual characterization of geochemical data
is the box-and-whisker plot, commonly called a boxplot. Figure
2 is a boxplot of several hundred copper concentrations from
each of two river systems (the Humbolt and Owyhee Rivers in
northeastern Nevada).

There are five components to each boxplot: the minimum
and maximum values represented by the whiskers (the short
horizontal lines at the end of the dotted vertical lines), the
range of the middle 50% of values (the second and fourth quar-
tiles) represented by the box, and the median concentration (the
heavy horizontal line in the box). The open circles are outlying
values that might (or might not) have significance. The box-
plots show the median, range, and variability of the measured
values. The thin horizontal line across the entire figure at 0.001
mg/L) is the analytical laboratory’s method detection limit; val-
ues below that line were not directly measured[8]. Boxplots
present a full description and characterization of the data that
is easily understood by all viewers. From policy and regulatory
perspectives the most visible difference in the two rivers raises
the question why they are so different. What explanatory vari-
ables caused the differences in copper concentrations in the two
rivers, and do differences reflect inherent variability or anthro-
pogenic influences?

One very important characterization of environmental
chemical and biological data sets is variability. Not only does
understanding inherent natural variability enhance decisions
about policy and regulations, it also identifies which class of
statistical models are most likely to produce technically sound
and legally defensible results. Statistical models of all three
paradigms are based on probability distributions and there
are many from which to select. Wikipedia lists 34 discrete
probability distributions and 106 continuous distributions; even
more exist and each has specific parameters and applicability
to a wide range of data types and characteristics. This is why
the most appropriate model can be fit to any data set, unlike
mathematical models that have fixed equations to which the
data must be fit.

Answering questions

There are two common type of environmental data: mea-
sured and nominal (named). A broad range of statistical models
for comparing environments and forecasting changes are avail-
able to analyze these mixed effects data sets. Measured quan-

tities of physical, chemical, and biological data are familiar to
everyone. However, explanatory named variables can be im-
portant in explaining differences in response variables. Com-
mon examples of nominal variables include season, soil type,
stream name, vegetation type. These variables are common in
data applicable to the Clean Water Act, Endangered Species
Act, National Environmental Policy Act, Superfund sites, and
solid waste disposal areas. When nominal variables are incor-
porated into additive mixed effects models the amount of the
observed response variability they explain is quantified.

The class of statistical models used to evaluate cause and
effect is that of regressions. There are linear and non-linear re-
gression models, including survival models (see, for example,
[9]) and less-widely known regression types such as quantile
regression. Linear regressions are commonly applied to envi-
ronmental chemical and biological data; for example species-
habitat relationships of Greater sage-grouse or Lahontan cut-
throat trout. Applying the correct type of regression model
to the available data and the concern to be addressed provide
strong justification for policy, regulatory, and operational deci-
sions.

The generalized regression model, Y = α + βX, is a straight
line relating the response (dependent) variable Y on the verti-
cal axis against the explanatory (independent) variable X on the
horizontal axis. The constant α is the Y-intercept (i.e., the pre-
dicted response variable value when the explanatory variable is
zero) and the constant β is the slope of the line that represents
the mean (average) population size for a given habitat size.

When there are abundant data a single regression line rep-
resenting the mean response value across the range of explana-
tory variable values provides limited value. It is better to ap-
ply a quantile regression that describes relationships of various
response variable levels to the range of explanatory variables.
Figure 3 shows data from an aquatic environmental risk assess-
ment.

Notice the different slopes of the two regression lines: as
the stressor value increases the highest 10 percent of the re-
sponse variables decreases more quickly than does the average
response. For a detailed explanation of the increased insights
provided by quantile regression see Figure 1 in [10]. They stud-
ied the relationship of Lahontan cutthroat trout densities (the Y
variable) as a function of the ratio of stream width to depth
(the X variable) over 7 years and 13 streams. The mean re-
sponse line is almost flat while the higher percentiles of fish
density decreased with increasing width-to-depth ratios and the
lower percentiles increased with increasing width-to-depth ra-
tios. This shows that basing policy or regulatory decisions on
a single, mean regression line will not necessarily reflect real-
ity. Quantile regressions have also been used to quantify ranges
of biotic responses to arsenic in soils [11] and sage-grouse to
habitat densities [11].

Forecasting future states to assess change can be accom-
plished using regression models by using the regression line, or
lines, relating the response variable to the explanatory variable
and by using multivariate regression models that can accommo-
date one or more response or explanatory variables, or multiple
variables in both categories (e.g., [12, 13] ). There is also the
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Figure 3: Quantile regression plot illustrating different relationships of a response variable to a stressor variable for the highest 10th percentiles of the response
variable compared to the mean of the response variable

more familiar time series approach to analyzing change over
time and predicting future values.

Environmental data tend to have unequally spaced collec-
tion periods. Many time series models assume equally spaced
data and they produce incorrect results with environmental data.
There are many suitable models for time series analysis of envi-
ronmental data based on the frequentist, information-theoretic,
and Bayesian statistical paradigms (e.g., [14–17]). Time series
analyses extend past plotting the data. Seasonal trends need
to be removed before any overall trend can be determined and
multiple time series can be compared to determine both how
and why they differ (or are similar).

There is another aspect of environmental data that is a com-
paratively new concept: that measurements and observations
of environmental chemicals and biota are components of the
whole, not the complete set of chemicals or species. When fish
are censored as an aquatic life beneficial use only some of the
species present are counted. Geochemicals are most frequently
found as multi-chemical compounds, not free ions, and repre-
sent only a portion of the whole chemical composition of the
water sample. The units of concentration (for example, mg/L)
reflect this reality. By definition, 1 liter of water weighs 1 kilo-
gram (1,000 milligrams) so the total weight of all chemical el-
ements has an upper bound of 1,000 mg. This means that if the
concentration of sodium chloride (NaCl) increases, some other
constituent (or multiple constituents) must decrease in concen-
tration by the same weight. This dynamic is addressed by the
compositional data analysis class of statistical models.

While compositional data was recognized early in the last
century it was not until mathematical geochemists took advan-

tage of the work of [18] and developed the statistical models
that provide the proper way to look at geochemical and public3

data to produce more realistic results. Biotic surveys such as
those common under the ESA and in species-habitat relation-
ships also benefit from being analzed as components of a larger
whole. By doing this spatial and temporal variation in the ra-
tios of the components provides mathematically and ecologi-
cally sound insights into the dynamics of the organisms and the
ecosystems in which they live. Analyzing the function (energy
transfer and nutrient cycling) of aquatic macroinvertebrate com-
munities as compositions is more reliable and accurate than are
structural comparisons based on taxonomic identifications and
provides a robust alternative to chemical maximum concentra-
tion limits as a method of setting water quality standards for
aquatic life[19]. This is a powerful tool for developing policies
and regulations because it permits separation of anthropogenic
changes from inherent variability of aquatic ecosystems.

3. Conclusions

Too many environmental policy and regulatory decisions
are based on the output of mathematical models. These models
use fixed mathematical equations to describe how an ecosys-
tem behaves or how a variable changes. These assume that we
know these behaviors and that they are relatively static. Ecolo-
gists know this is not the case; natural ecosystems change con-
stantly and at different scales. For example, sand bars in the
lower Columbia River move about 1 meter per day during the

3Economic, political, and social data collected by governments.
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late summer low flow period, even when the dams are not re-
leasing water through hydroelectric generating turbines, and the
water temperature of headwater mountain streams can vary by
as much as 20°C per day. Fixed-equation mathematical mod-
els of natural ecosystems also require many input variables and
have rates and constants that need to be estimated, assumed,
or approximated. These factors make them vulnerable to chal-
lenge by project or regulation opponents. Because of the com-
plexities of mathematical models and the large amounts of data
required they take a lot of time, effort and money to yield a
run. While state-of-the-art 40-50 years ago they are not as use-
ful for informing environmental policies and regulations today.
Mathematical models are effective with static systems such as
buildings and bridges, but not with highly variable systems such
as the natural world.

Statistical models are based on probability distributions,
each of which assumes certain data characteristics. There are
many probability distributions whose assumptions are met with
data from specific environments. This makes the choice of sta-
tistical model and the analytical process both technically sound
and legally defensible. The three statistical paradigms include
analytical models that incorporate variability at different scales
in the data and allow separation of anthropogenic from natu-
ral changes. Predictions of future states and tests of reality
with those predictions are key to compliance with regulations
under the Clean Water, Endangered Species, and National En-
vironmental Policy Acts, among others. While mathematical
models define the causal variables for observed effects in their
equations, statistical models examine a set of potential explana-
tory variables (singly and in various combinations) to determine
which best fit the available data.

Policies and regulations can be supported by demonstrably
best available science by taking advantage of current knowledge
in environmental data analytical methods and our understand-
ing of ecological theory applicable to all natural ecosystems.

4. Article Information

The article was received May the 3rd, 2016, in revised form
July the 19th, 2016 and available on-line September the 15th,
2016.
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