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Abstract

The spectroscopic method based on surface-enhanced Raman spectroscopy (SERS) technique combined with chemometric methods was devel-
oped for simple, cost-effective, and efficient analysis of chlorpyrifos (CPF) and aldicarb (ALD) pesticide residues in animal feed. Animal feeds
free from the pesticides were spiked at different concentrations of CPF (0-20 mg/kg) and aldicarb (0-100 µg/kg). Gold nanoparticles were mixed
with sample extract for SERS measurement. A significant spectral difference induced by the presence and different level of CPF and ALD con-
centration in animal feed was observed between the pesticide spiking groups. Different chemometric models applied on training datasets showed
excellent classification rates (100 percent) while the models on external validation dataset exhibited lower correct classification rates (50.0-76.7
percent) with no false-negative error. The selected chemometric models for CPF and ALD quantification also showed a high predictive ability and
performance. The developed models displayed no statistical significant difference between model predicted and reference values in the external
validation dataset (p < 0.01). The study results indicate that the SERS spectroscopic method could be an effective and efficient analytical tool for
pesticide analysis in highly complex animal feed matrices for screening at a point of sampling to improve food and feed safety.
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1. Introduction

Raman spectroscopy based on inelastic scattering of light
interacting with molecular vibrations has multiplexing capabil-
ities due to its ability to provide plenty of structural and quan-
titative information of molecules through high resolution and
distinguishable Raman bands [42]. The Raman scattering tech-
nique depends on a polarizability of chemical bonds, particu-
larly non-polar functional groups, and can offer well-resolved
and fewer overlapped bands in aqueous environments. How-
ever, conventional Raman spectroscopy suffers from a lack of
sensitivity resulting from a low efficiency of Raman scattering
effect.

Surface-enhanced Raman spectroscopy (SERS) is a promis-
ing Raman technique to enhance such weak inelastic Raman
scattering by using metallic nanoparticles and surface plas-
mon resonance effects of the substrate [7, 50]. The enhance-
ment level and acceptance of SERS are largely determined
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by its preparation method. The preparation methods reported
in previous studies include chemical reduction of metallic
ions, thermal decomposition, and electric/physical dispersion
of nanoparticles, resulting in various nanostructures with a wide
range of particle sizes [45, 14]. The designed SERS substrates
can provide considerably greater sensitivity, with an enhance-
ment factor as high as >1010, enough to detect and identify
a single molecule [53, 35]. The Raman enhancement is be-
lieved to be a local phenomenon depending on the morphology
of SERS and a limited number of Raman active particles form-
ing hot spots [26, 54]. The Raman enhancement effect has been
explained by electromagnetic (EM) and charge transfer mech-
anisms between absorbed molecules and SERS nanoparticles,
which aid an enhancement of the electromagnetic field, pro-
ducing strong Raman signal [7, 37]. However, it still seems to
be a challenge to understand and control optimal conditions to
yield a more efficient SERS substrate, as well as to systemati-
cally develop a SERS substrate technology on the basis of well-
engineered processes. In addition, in order to use the SERS
technique for a routine field screening, it would be desirable
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to need less expensive materials and non-hazardous chemicals,
employ simpler statistical techniques, and minimize instability
and morphological variations of the SERS substrates [17, 46].

Chemometrics is an interdisciplinary field that employs
multivariate statistical techniques, mathematical procedures,
and information technologies, to facilitate spectral data process-
ing and interpretation to relate acquired spectra of vibrational
spectroscopy to chemical reference values or process parame-
ters [8, 40]. Chemometric algorithms have been widely used in
Raman spectroscopic studies to greatly simplify and better un-
derstand a complex structure of large spectral datasets, which
facilitate the generation and testing of a hypothesis and extract
hidden and meaningful information from collected spectral data
[9, 20]. Chemometric methods can be commonly categorized
into four groups: 1) data processing (e.g., baseline correction,
normalization, derivatives, deconvolution, and multiplicative
correction); 2) experimental design (e.g., actor screening); 3)
classification, which can be either supervised pattern recogni-
tion (e.g., discriminant analysis) or unsupervised pattern recog-
nition (e.g., principal component analysis and cluster analysis)
techniques; and 4) regression methods (e.g., artificial neural
network, multiple linear regression, and partial least squares)
[32, 40].

Pesticides have been broadly used in agricultural crops to
control pests and microorganisms, providing many benefits
for farmers, such as improvement of crop yields, quality, and
value. However, improper or even proper application of pes-
ticides can lead to contamination of environments, including
water, soil, and air [15, 44]. Pesticide residues have been of-
ten found even in foods, and may be ultimately absorbed by
the human body, impairing food safety and threatening hu-
man health. The inappropriate use of the pesticides may also
leave residues in animal feeds, which could contaminate ani-
mal products for human consumption [28, 13]. Chlorpyrifos
(C9H11C13NO3PS, CPF) containing a benzene ring is one of
the most widely used organophosphate pesticides for agricul-
tural products [30]. The application of CPF in agricultural pro-
duction has been a concern due to its adverse effects on the
environment and toxic effects on human beings, by inhibition
of an enzyme (acetylcholinesterase) essential for nervous sys-
tem function [12]. Aldicarb (C7H14N2O2S, ALD), in turn, is
an oxime carbamate insecticide registered for use on a variety
of crops, such as cotton, potatoes, peanuts, and others, but not
approved for home and garden use [6, 39]. Like CPF, aldicarb
inhibits cholinesterase and affects the nervous system, but the
process is quickly reversible. It is believed that aldicarb is not
carcinogenic or mutagenic, and does not cause other long-term
adverse health effects [39]. Because of the potential significant
adverse effects of CPF and ALD on the environment, animals,
and humans, the regulatory agencies charged with regulation of
pesticides established monitoring programs and statutory direc-
tives to control their use and applicability, imposing maximum
residue limits (MRLs) in animal feeds and human foods [18].
The United States Environmental Protection Agency (EPA) es-
tablished a tolerance for chlorpyrifos of 0.1 mg/kg for human
and animal commodities [47, 12]. Recently, in Texas, two fin-
ished feed samples (poultry and beef cattle) were collected by

the Office of the Texas State Chemist, the local regulatory body
for monitoring pesticide residues in animal feeds. They were
found to be contaminated with high levels of CPF (0.48 mg/kg
and 0.27 mg/kg). Of the follow-up samples, three (two poul-
try and one beef cattle) also contained CPF at 0.32 mg/kg, 0.01
mg/kg, and 0.14 mg/kg.

Analysis of CPF and ALD residues in animal feeds is not an
easy task because a large amount of interfering co-extractants
need to be removed and may significantly affect the perfor-
mance of instruments and methods. Therefore, the extrac-
tion of CPF and ALD residues in animal feeds requires in-
tricate strategies for efficient sample preparation and final de-
termination [10, 49]. Of the methods applied for analysis
of CPF and ALD in animal feeds, gas or liquid chromatog-
raphy combined with mass spectroscopy have been routinely
used [49, 16, 33, 39]. Although analytical methods based on
enzyme-linked immunosorbant assays (ELISA) and biosensors
have been developed to overcome some drawbacks of existing
methods, such as time consuming, labor intensive, and expen-
sive extraction and cleanup procedures, they are less attrac-
tive and reliable, particularly for rapid and accurate screen-
ing of pesticide contaminated feed samples having a variety
of interferents due to inherent technical limitations and defects
[19, 38, 51]. SERS may provide a more rapid and less expen-
sive analytical method for animal feeds, because of the high se-
lectivity and sensitivity required for practical applications. Pre-
vious studies reported the application of the SERS technique,
with promising results for detection and identification of a few
pesticide residues in diverse sample matrices [52], but rarely in
animal feeds such as alfalfa, ground corn, fish meal, horse feed,
swine feed, cattle feed, soy bean, and poultry feed. Therefore,
the present study was aimed at investigating the feasibility of
applying the SERS technique for direct detection and identifi-
cation of CPF and ALD in animal feed, at different levels, to
develop and validate the spectroscopic method for simple, non-
destructive, and more efficient determination of residues of both
pesticides.

2. Materials and Methods

2.1. Materials
Chlorpyrifos (CPF) and aldicarb (ALD) pesticides were ob-

tained from Sigma-Aldrich (St. Louis, MO). HAuCl4·3H2O
and trisodium citrate for synthesis of gold nanoparticle (AuNP)
were also ordered from Sigma-Aldrich. All chemicals, organic
solvents, and reagents were of analytical grade and used as re-
ceived, without any further purification.

2.2. Sample Preparation
Animal feed samples naturally contaminated with CPF and

ALD pesticides in a wide range of concentrations are not
commercially obtainable. In addition, the pesticide residues
are most likely inhomogenously distributed in naturally-
contaminated feed samples, which could influence the accuracy
and repeatability in SERS measurement, particularly for low-
concentration samples, and thus the reliability and predictabil-
ity of the developed models. As a result, CPF- and ALD-free
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beef cattle feeds were obtained from the Office of the Texas
State Chemist (OTSC) regulatory samples and spiked with pes-
ticide solutions to prepare samples in the range of 0 to 20 mg/kg
and 0 to 100 µg/kg for CFP and ALD, respectively. The spiked
samples were placed in a polyethylene bottle and stored in a re-
frigerator at 4◦C prior to SERS measurement and biochemical
analysis. The samples were equilibrated at room temperature
for more than 30 min before the next extraction process.

2.3. Sample Extraction and Chromatographic Analysis of CPF
and ALD

CPF was extracted from the spiked sample based on the
method described in a previous study [49]. Briefly, 5 g of the
spiked sample were placed in a centrifuge tube to which 10 mL
deionized water and 15 mL acetonitrile were added and vigor-
ously shaken for 5 min. The resultant mixture was then added to
1 g trisodium citrate dihydrate, 0.5 g disodium hydrogen citrate
sesquihydrate, 1 g sodium chloride, and 4 g anhydrous sodium
sulphate, followed by hand shaking for 1 min. The tube was
then centrifuged for 5 min at 700 g. After centrifugation, a
7.5-mL aliquot of supernatant was taken and mixed with 0.125
g primary secondary amine (PSA), 0.75 g anhydrous sodium
sulphate, and 0.5 g C18. This mixture was further centrifuged
for 5 min at 700g. An aliquot of the supernatant was directly
used for SERS measurement or transferred into an amber vial
for gas chromatography-mass spectrometry (GC-MS) analysis.
For GC-MS analysis, 5 µL of the filtrate were injected into
an Agilent 7890 GC (Agilent Technologies, Santa Clara, CA)
coupled with an Agilent 5975 inert mass spectrometer using a
Combi PAL autosampler (CTC Analytical, Zwingen, Switzer-
land). The temperature of the injection port was held at 250◦C
for 1.5 min and then increased to 300◦C at 200◦C/min. The fi-
nal injection temperature was held for 20 min. The initial split
mode was a split ratio of 20:1 and at 0.01 min, the split vent
was closed and reopened at 1.5 min. Afterward, the split ratio
was held at 100:1 for 20 min and reduced to 20:1 until the end of
the run. The GC oven temperature was programmed as follows:
initial temperature 80◦C for 3 min, 80-150◦C at 30◦C/min, and
150-300◦C at 10◦C/min, which was held for 10 min. Helium
was the carrier gas, at a constant flow rate of 1.2 mL/min. MS
conditions were optimized to simultaneously obtain scan and a
selected ion monitoring (SIM) data for quantitative determina-
tion of CPF. The characteristic ions monitored for quantitative
analysis of CPF were m/z 197, 258, and 314, at a retention time
of 16.5 min. Data acquisition and analysis were performed us-
ing Enhanced Chemstation (Agilent Technologies).

The method proposed by an earlier study [31] was used to
extract ALD from the spiked feed sample. Briefly, 2.5 g of the
spiked sample were first mixed with deionized water using a
vortex. After soaking for 2 hr, the mixture was extracted with
15 mL of methanol containing 1% formic acid and shaken for
1 hr. Approximately 4 mL of the supernatant from the centrifu-
gation at 1,600 g for 10 min were filtrated through a 0.25-µm
syringe filter before SERS analysis and injected into the liq-
uid chromatography tandem mass spectrometry (LC-MS/MS)
system (Waters, Milford, MA). A Waters Acquit UPLC system
was equipped with a 2.1 x 50 mm BEH C18 column (1.7-µm

particle size), operated at 50◦C. The UPLC system was coupled
to a Quattro Premier XE system with an electrospray interface
(ESI). The mobile phases A and B were water with 20 µL/L
formic acid 1 mM ammonium formate and 95% methanol with
20 µL/L formic acid and 1 mM ammonium formate, respec-
tively. A Quattro Premier XE tandem quadrupole mass spec-
trometer system was operated under the following tuning set-
tings: a source temperature of 120◦C, a cone gas of 50 L/hr, a
desolvation gas of 450 L/hr, a capillary voltage of 3.0 KV, ex-
tractor lens of 4 V, and desolvation temperature of 450◦C. The
multiple reaction monitoring (MRM) transition for ALD was
m/z 208 (precursor ion) to m/z 89 (production ion).

2.4. Synthesis of Gold Nanoparticles
Gold nanoparticles (AuNP) for SERS measurements were

prepared following the method of Bastús et al. [2] with mi-
nor modification. In brief, a three-necked flask containing 150
mL of 2.2 mM sodium citrate solution was heated under vigor-
ous magnetic stirring and condensed for prevention of solvent
evaporation. Once the solution started boiling, 1 mL of 25 mM
HAuCl4 was added and its color was changed as described in
the previous study. The resultant solution containing particles
with a size of ∼10 nm as the Au seeds was used and cooled
to 90◦C. Then, 1 mL of 25 mM HAuCl4 solution was added,
and the solution was allowed to stand for 30 min to complete
the reaction. After the reaction was complete, deionized water
and 60 mM sodium citrate were added to dilute the extracted
solution according to the predefined ratio of 60 mM sodium cit-
rate:deionized water:sample extract = 2:53:55. The same pro-
cess was repeated eight times to obtain AuNPs with a desirable
particle size (∼70 nm) (Figure 1).

A transmission electron microscopy (TEM) image and a
size distribution of the synthesized AuNPs were obtained us-
ing JEOL 1200EX operating at a 100 kV (JEOL Ltd., Tokyo,
Japan) and a Zetasizer Nano ZS ZEN3600 analyzer (Malvern
Instrument Ltd, UK), respectively. The TEM image and par-
ticle size distribution results indicated that nanoparticles man-
ufactured under effective control of temperature, pH, and seed
particle concentration are monodispersed, with a narrow size
distribution of mean diameter of <100 nm (Figure 1). Based on
the particle size distribution, the zeta potential at neutral con-
ditions was estimated as -35 eV, as proposed in other studies
[48, 55].

2.5. SERS Measurement
A 30-µL portion of the AuNP solution was gently mixed

with 10 µL of sample extract and 3 µL of 1 M NaCl solution to
prepare the analyte mixture solution to acquire the SERS spec-
tra. The resulting mixture solution was transferred to a cen-
trifuge tube, vortexed until homogeneous, and allowed to cool
to room temperature. Afterwards, 30 µl of the mixture solution
were placed into an Al capsule and, after allowing the solution
to stabilize for 1 min, the Al capsule was embedded in the well
plate with a 7-mm diameter and a 10-mm depth mounted on
the software-controlled motorized sample stage. The sample
plate with 96 wells placed on a sample stage was automati-
cally aligned at <2 micro step resolution, which would allow
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Figure 1: Transmission electron microscopy (TEM) image and a size distribution (inset) of gold nanoparticles (AuNPs)
synthesized by kinetically controlled seeded growth procedure used for detection of CPF and ALD pesticide in animal feed

adjustment of the sample position in an x-y-z direction for op-
timal spectra acquisition. All samples were measured in tripli-
cate using a Raman Spectroscopy system (RamanStation 400F,
Perkin-Elmer, Beaconsfield, Buckinghamshire, UK). The Ra-
man system was interfaced with the Spectrum software (v.6.3.)
for data acquisition and analysis, and equipped with 350-mW
near-infrared laser at an excitation wavelength of 785 nm and
a 256 x 1024 pixel CCD detector. A total of 16 spots on each
sample were scanned and averaged to obtain a representative
spectrum of each sample. The sample was exposed to the laser
power of about 20 mW with an exposure time of 15 sec and 2
scans, and its spectrum was recorded in the Raman shift range
of 200 and 3500 cm-1 at the spectral resolution of 4 cm-1.

2.6. Preprocessing of Spectral Data

Raw Raman spectra were preprocessed before data analy-
sis and development of chemometric models because of unpre-
dictable and inherent artifacts (e.g., cosmic rays, wavelength
shift, broad band, aliasing effect, and increased noise) affect-
ing the performanceof Raman spectroscopy. Such artifacts can
stem from subtle changes in environmental and instrumental
conditions, including a drift of the monochromator or detector
temperature, sample radiation, pixel variation, and grating shift
[3]. As a result, the SERS spectrum of CPF and ALD samples
was corrected for background at the time of spectral acquisition.
The acquired raw spectrum was further baseline corrected and
normalized to minimize the influence of the instrumental and
environmental changes in the laboratory on the Raman signal
and to reduce unpredictable variations in the laser energy and
Raman signal. The normalized spectrum was further smoothed

using a 9-point Savitzky-Golay filtering function to calculate
the first and second derivatives of the spectral data for removal
of baseline and linear slope effects, and also deconvoluted for
a higher resolution of unresolved Raman bands. All prepro-
cessed spectral data were converted to ASCII file for further
application of statistical procedures to develop qualitative and
quantitative chemometric models.

2.7. Development and Validation of Chemometric Models

Multivariate statistical methods including component anal-
ysis (PCA), cluster analysis (CA), linear discriminant analysis
(LDA), k-nearest neighbor (KNN), and partial least squares dis-
criminant analysis (PLSDA) were applied on the preprocessed
spectral data to develop chemometric models for classification
of feed samples by the level of CPF and ALD spiking. All pesti-
cide samples were assigned into one of five or six different sub-
sets according to their spiking level prior to the statistical anal-
yses. Two-thirds of spectral data (n=108 for CPF and n=105
for ALD) were used as a training dataset for development of
the chemometric model, while the rest of the data (n=36 for
CPF and n=30 for ALD) was considered as a validation dataset
for validation of the developed model (Table 1). The perfor-
mance, precision, and accuracy of the developed model were
compared and evaluated mainly based on correction classifica-
tion and false negative error rates to determine the model best
suitable for analyzing pesticide-contaminated feed samples.

Similar to development of the qualitative chemometric
models, the different preprocessed spectra were correlated with
GC-MS reference values for development of quantitative cal-
ibration models by the use of multivariate statistical meth-
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Table 1: Descriptive statistics of feed samples spiked with known concentrations of CPF and ALD d

ods such as multiple linear regression (MLR), partial least
squares regression (PLSR), and principal components regres-
sion (PCR). The total number of samples was also divided into a
training and validation datasets at the same ratio as used for the
qualitative models. The input variables (wavelengths) for MLR
calibration models were determined using a stepwise regression
and R2 selection methods, while PLSR and PCR models were
cross-validated using a leave-one out method for testing predic-
tive ability of the models. All calibration models developed on
different preprocessed data and statistical methods were evalu-
ated and compared based on the root-mean-square error of cal-
ibration (RMSEC), the root mean standard error of prediction
(RMSEP), and the correlation coefficient of determination (r2),
using external validation datasets. The lowest concentration at
which the developed model can detect and quantify CPF and
ALD in animal feed with reasonable accuracy and precision
was determined by the limit of detection (LOD) and the limit
of quantification (LOQ):

LOD = (|a| + 3Sa)/b and LOQ = (|a| + 10Sa)/b,

where a is the intercept on the y-axis, Sa denotes the standard
deviation for a, and b represents the slope of the linear regres-
sion curve.

Those chemometric methods were employed for this study
because they have demonstrated their suitability and appropri-
ateness in developing and validating the models to explain the
relationship between acquired Raman spectra, chemical refer-
ence values and physicochemical properties in our previous
studies [26, 27, 25]. More details on applied statistical tech-
niques and their mathematical bases used for qualitative and
quantitative models are described other studies [26, 9, 11, 20].

2.8. Statistical Analysis

Other statistical methods used for comparison between the
model predicted and actual reference values include Pearson’s
correlation coefficient (r), a paired sample t-test, a significance
of p-value, standard error of mean difference, and RPD value
(the ratio of the standard deviation of the reference values to
RMSEC). All statistical analyses and modeling for CPF and
ALD analysis were carried out using SAS software (ver. 9.4,

SAS Institute, Cary, NC) and Microsoft Excel (Microsoft, Red-
mond, WA).

3. Results and Discussion

3.1. Spectra Data Processing and Analysis
Feed samples spiked with CPF had a narrower range of

lower concentrations from 0 to 20 mg/kg with a mean of 3.68
mg/kg and a median of 0.8 mg/kg than ALD-spiked samples
whose concentrations were in the range of 0 to 100 µg/kg with
a mean of 20.33 µg/kg and a median of 7.0 µg/kg (Table 1). De-
scriptive statistics of all training and validation datasets showed
lower degree of peakedness (kurtosis of 2.18 to 3.07 for CPF
and 1.88 to 2.77 for ALD) and left skewed distribution (skew-
ness of 1.85 to 1.98 for CPF and 1.77 to 1.91 for ALD) of
concentrations compared to normal distribution, regardless of
the type of pesticide. The concentration ranges of CFP and
ALD spiked samples used for the chemometric models devel-
oped in the present study were determined to cover the pesti-
cide residues in animal feeds found in the commercial market
and the feed supply chain [21, 1]. Therefore, the tested sam-
ples should be suitable and appropriate to develop the model
for predicting and estimating the pesticide levels in animal feed
products commonly found in the market and to assist in early
detection and screening of the contaminated feed samples.

Figure 2 shows the average derivative preprocessed spec-
tra of feed sample extracts representing each pesticide spiking
group, displaying SERS spectral variations associated with CPF
and ALD concentration in several Raman shift regions. Raman
intensity difference was distinctive among the five or six groups
of the pesticide spiked samples over the entire region of SERS
spectra. Despite use of highly sensitive SERS technique, CPF
samples with the range of higher concentrations (0 to 20 mg/kg)
(Figure 2, A-D) displayed less pronounced and less signifi-
cant spectral differences among the spiking groups compared to
ALD samples with the range of lower concentration (0 to 100
µg/kg) (Figure 2, E-H). This can be explained, in part, by the
narrower range of spiking concentrations and the influence of
less compatible morphological and chemical properties of CPF
of larger molecular weight (350.59 g/mol) with SERS active
sites than ALD, of smaller molecular weight (190.26 g/mol),
lowering Raman signal enhancement. Irrespective of the type
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Figure 2: Raman characteristic peaks of the average 2nd derivative preprocessed spectra of chlorpyrifos (CPF) samples at 648
cm-1 (P=S stretching), 745 cm-1 (C-Cl stretching), and 1328 cm-1 (C-N stretching) (A-D) and those of the average 1st derivative

spectra of aldicarb (ALD) samples at 788 cm-1 (N-H deformation), 832 cm-1 (N-O stretching), 1252 cm-1 (N=S=O antisymmetric
stretching), and 1556 cm-1 (CNH stretching-bending) (E-H)
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Figure 3: Absolute correlation coefficients of PLSR models developed on SERS spectra (A), and the scatter plots created by the
principle component scores (B) and canonical discriminant scores (C and D) for different CPF and ALD spiking groups

of pesticide, Raman intensity difference appeared to be less dis-
tinctive in some Raman shift regions among the spiking groups,
which could be caused by a similar level of coexisting func-
tional chemical groups in samples. There were several Raman
shift regions showing significant spectral difference in Raman
intensity, which could be attributed to the presence of different
concentrations of pesticides in feed samples. Raman shift re-
gions that are apparently closely associated with CFP concen-
tration in feed samples include 636-964 cm-1 and 1268-1412
cm-1, while ALD concentrations in feed samples seem to be
correlated with several Raman bands in Raman shift regions of
704-952 cm-1, 1200-1316 cm-1, and 1432-1588 cm-1 (Figure 2).
Compared to normalized spectra, 1st and 2nd derivative prepro-
cessed spectra showed a slightly better separation of the spiked
feed samples at different concentrations of CPF and ALD. In the
derivative preprocessed spectra, the degree of Raman intensity
difference among the pesticide spiking groups was significantly
dependent on the spiking level, although it was often not visu-
alized between the groups with a small difference in pesticide

concentration.
The characteristic peaks of CPF and ALD were clearly

identified with synthesized SERS substrates. Although SERS
substrates did not show a high efficiency in predicting very
lower concentrations of CPF and ALD in samples, the Raman
signal appeared to be enhanced with a further increase of pes-
ticide concentration up to the highest concentration employed
for the study. Raman peaks highly correlated with and propor-
tional to pesticide concentration also showed higher correlation
coefficients, regression coefficients of PLS models, and factor
loadings in PCA for the concentrations (Figure 3). The vibra-
tional modes of functional chemical groups corresponding to
the characteristic peaks of CPF and ALD could be tentatively
determined based on a spectroscopy software (KnowItAll®,
Bio-Rad, Hercules, 412 CA) and previous studies [26, 5, 42].
The characteristic peaks of CPF at 648 cm-1, 745 cm-1, and
1328 cm-1 are attributed to P=S stretching, C-Cl stretching, and
C-N stretching, respectively (Figure 2, A-D). The prominent
peaks of ALD at 788 cm-1, 832 cm-1, 1252 cm-1, and 1556 cm-1
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Table 2: Descriptive statistics of feed samples spiked with known concentrations of CPF and ALD

correspond to the N-H deformation, N-O stretching, N=S=O
antisymmetric stretching, and CNH stretching-bending, respec-
tively (Figure 2, E-H). These findings indicate that SERS spec-
tral response is sensitive and specific enough to measure vari-
ations in concentrations of CPF and ALD in feed sample ex-
tracts. The SERS spectra of CPF- and ALD-spiked samples
showed some major peaks which are also found in standard
solid CPF and ALD by standard Raman spectroscopy. How-
ever, SERS and standard Raman spectroscopy did not seem to
share identical spectral features, likely due to different sensitiv-
ity to the pesticide molecules, peak shifts in SERS spectra, and
interference by a large number of compounds extracted from
the feed sample. An identification of the fingerprint regions
for pesticide molecules appeared to be somewhat difficult for
animal feeds compared to other matrices, because interference
and contribution from functional chemical groups of coextrac-
tants seemed to have a huge impact on the Raman signal of
CPF and ALD molecules, thus predominating over their fin-
gerprint regions [5, 29, 41]. In addition, inhomogeneous dis-
tribution of gold nanoparticles and competition for binding to
the active surface sites of SERS substrates between coextrac-
tants and pesticide molecules may also have an adverse effect
on enhancement and easy identification of Raman signals of
the target molecules. Other studies reported that the intensity
of the UV-VIS plasmon absorption band was proportional to
the size of the nanoparticles [2]. Since inhomogeneous distri-
bution of AuNPs in size could cause uneven distribution of hot
spots and active surfaces on the nanoparticles and their assem-
blies, interacting with the pesticide molecules and their chem-
ical functional groups, the inhomogeneity of the particle size

distribution may greatly affect the consistency of the Raman
enhancement effect and the repeatability of the Raman signal
intensity [27, 2].

3.2. Development and Validation of Chemometric Classifica-
tion Models

The classification models to classify and predict CPF and
ALD spiked samples into predefined groups at different con-
centrations were developed on the preprocessed spectra data
by applying the chemometric methods mentioned above. The
classification accuracies of the applied discriminant models for
SERS spectra data are presented in Table 2. KNN and LDA
models showed higher predictive accuracy and lower predic-
tion error for training and external validation datasets than the
PLSDA model. Regardless of the preprocessed and chemomet-
ric method applied, all three models showed a correct classifi-
cation rate of 100 percent by the resubstitution method of error
estimation, which typically gives an optimistic error rate [20].

KNN models for CPF and ALD developed on a training
dataset demonstrated a high classification accuracy of 100 per-
cent in cross-validation analysis for all preprocessed data when
all variables and a subset of variables selected using a step-
wise selection in PROC STEPDISC procedure were applied.
However, the correct classification rate of LDA and PLSDA
models was significantly lower with all variables applied to
the training dataset (Table 2). When the calibration models
were applied on an external validation dataset, both the KNN
and LDA models showed identical and somewhat lower clas-
sification accuracies, around 65 percent for CPF and 75 per-
cent for ALD. Despite the lower accuracy for the validation
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Table 3: Statistical analysis results of three chemometric models for SERS spectral data in predicting CPF and ALD concentration
in animal feed extracts m

dataset, the chemometric models did not misclassify any mod-
erate or high CPF and ALD concentration samples to Group
1 (very low or free of pesticide), that is, no false negative re-
sults. The zero-misclassification of pesticide spiked samples
as negative is meaningful and crucial in analyzing commercial
and non-commercial samples, implying that the SERS tech-
nique can be used as a simple and reliable tool for a rapid
and accurate screening of pesticide-contaminated samples for
a high-throughput analysis to ensure feed safety. The dendro-
gram from cluster analysis and the scatter plot created using the
first few principal components with higher eigenvalues showed
a clear separation of a different type of pesticide for all pre-
processed spectral data (Figure 3). However, the classification
of the pesticide-spiked samples within each pesticide was not
clearly configured in the dendrogram and scatter plot by the
groups at different concentrations, even when the best cluster-
ing algorithm (hierarchical Ward’s minimum variance method)
and more principal comments were applied.

Unlike inaccurate clustering of pesticide-spiked samples to
the predefined groups on the principal component scatter plot,
the first few canonical discriminant variables, each of which is
a combination of the original variables, allowed to clearly sep-

arate the spiking groups by pesticide concentration on a scatter
plot [20]. Figure 3 shows the scatter plot created by canonical
discriminant scores obtained from LDA for SERS spectra, and
exhibited actual distance and difference in spectral characteris-
tics among different spiking groups in a reduced dimensional
space. The 3D scatter plot was generally in good agreement
with the classification results of the models, and appeared to
clearly group CFP- and ALD-spiked samples at a similar level
of pesticide within the same group closely together, while the
samples with very different concentrations are grouped at larger
distance from each other. The first three canonical variables
were significant (p < 0.01) and substantially contributed to dis-
crimination and prediction of the predefined groups. A total of
more than 90 percent of variation in all processed spectra could
be explained by the first three canonical variables.

3.3. Development and Validation of Chemometric Quantifica-
tion Models

Three chemometric methods, including multiple linear re-
gression (MLR); partial least squares regression (PLSR); and
principal component regression (PCR); were applied to build
the calibration models for CPF and ALD quantification in ani-
mal feed, using all preprocessed spectral data at a Raman shift
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Figure 4: Linear regression plots of three chemometric models developed on spectral data and applied on the external validation
datasets, showing the relationship between predicted values by the models and actual values determined by the reference methods
for chlorpyrifos (CPF) and aldicarb (ALD) analysis: (A, B) MLR, multiple linear regression; (C, D) PLSR, partial least squares

regression; and (E, F) PCR, principal component regression

range of 400 to 2500 cm-1. These chemometric methods were
useful and suitable to explain the relationship and differentiate
between pesticide-contaminated and non-contaminated sam-
ples by extracting meaningful information from highly over-
lapped and superimposed Raman spectra with subtle difference
[27, 24, 43].

Table 3 and Figure 4 show the results of chemometric mod-
els for SERS spectral data to compare SERS predicted values
by the models to actual CPF and ALD values determined by the
reference methods. The results indicate that the performance
of the models were slightly or significantly influenced by the
type of pesticide and chemometric method applied. MLR and
PLSR models for CPF and ALD quantification performed bet-

ter than PCR models, exhibiting lower error rate, better regres-
sion quality, and higher predictability, which, in fact, was con-
sistent with our previous studies [26, 27]. The MLR models
for ALD quantification performed slightly better according to
r2 values (0.860 vs 0.816) and predictive error rates (11.091
µg/kg vs 12.746 µg/kg) than PLSR models, while the two mod-
els were very comparable in predicting CPF concentration in
animal feed with respective r2 values of 0.864 vs 0.855 and re-
spective error rates of 2.338 mg/kg and 2.294 mg/kg. The PCR
models for CPF and ALD quantification were less satisfactory
compared to MLR and PLSR models (Table 3 and Figure 4).
The lower predictive power and performance of PCR models,
regardless of the type of pesticide, can be attributed in part to
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the principle of the PCR algorithm, which is a procedure to
decompose the acquired spectral data for variance estimation.
As a result, the PCR algorithm can be less powerful and accu-
rate in developing the model for quantitative analysis than the
PLSR algorithm, which calculates the covariance between the
acquired spectra and actual concentrations of pesticides in sam-
ples. In the present study, the SERS spectra were not highly
resolved and reproducible due to several possible reasons men-
tioned above, which could more significantly influence the per-
formance of the PCR algorithm than other chemometric algo-
rithms.

The subset of the optimum wavelengths was selected as in-
put variable in MLR models by testing all possible combina-
tions of Raman wavelengths and eliminating overfitting of the
model and collinearity of highly correlated wavelengths, using
the stepwise regression variable selection procedure and the
adjusted R2 method to best predict CPF and ALD concentra-
tion [27, 4]. MLR models developed on preprocessed spectral
data showed higher coefficients of determination (r2) and lower
error rate (RMSEC and RMSEP) and explainined a high de-
gree of variation in the spectral data. MLR calibration models
applied to training datasets of SERS spectral data showed ac-
ceptable predictability, with r2 value of 0.982 and RMSEC of
0.793 mg/kg for CPF and also r2 values of 0.968 and RMSEC
of 5.266 µg/kg for ALD. When MLR calibration models were
further tested for the external validation datasets, the models
displayed lower predictive accuracy (r2 values of 0.864 for CPF
and 0.860 for ALD) and moderate error rates (RMSEP values
of 2.338 mg/kg for CPF and 11.091 µg/kg for ALD). The slopes
of MLR calibration models for training and validation datasets
were 0.982 and 1.002 for CPF, respectively. Likewise, the MLR
calibration models for ALD quantification displayed slopes of
0.968 for training dataset and 0.908 for validation dataset (Ta-
ble 3). These statistical results are promising, indicating that
highly reliable and robust MLR models on SERS spectra can
be developed under optimal spectral sampling conditions and
through innovative approaches for better predicting CPF and
ALD concentration in animal feed. Raman wavelengths used as
input variables in MLR models were associated with functional
chemical groups of pesticides spiked in samples. These wave-
lengths also showed higher absolute correlation coefficients for
PLSR models (Figure 3), indicating the selected wavelengths
are more critical and meaningful in quantifying CPF and ALD
concentration in animal feed. However, MLR models were in-
accurate and rather unreliable in predicting lower CPF concen-
trations of less than 1.5 mg/kg and ALD concentrations of less
than of 10.0 µg/kg, displaying higher prediction errors (Fig-
ure 4). The obtained limit of detection (LOD) and the limit
of quantitation (LOQ) of the MLR models also showed a little
higher values than the maximum residue limits (MRLs) (Table
3). These are also true for other chemometric models, particu-
larly PCR models, which are believed unable to properly pre-
dict the lower pesticide concentration residues in animal feed.
The disparity between model predicted and reference values at
lower CPF and ALD concentrations may be attributed to several
factors: 1) Raman laser is not sufficiently powerful (considered
to reach only a few micrometers below the sample surface), so

it may not penetrate deeply enough in animal feed extracts to
detect a gradient of pesticides; 2) pesticide molecules adsorbed
on or in the vicinity of nanoparticles are inhomogenously dis-
tributed and vary from sample to sample; and 3) nanoparticle
size is not uniform and the agglomeration of nanoparticles eas-
ily occurs in some areas, deteriorating the repeatability of the
spectra [26, 34, 24].

Similar to the multivariate regression method of PCR,
PLSR is a quantitative regression algorithm that uses a few fac-
tors enabling it to contain almost all information from the orig-
inal Raman spectra [36]. The optimum number of factors was
determined based on the predicted residual error sum of squares
(PRESS) and p-value of comparing the model between two dif-
ferent numbers of extracted factors [27]. In this study, PLSR
models for SERS spectral data required eight and five factors
to predict CPF and ALD concentration in animal feed, respec-
tively, while PCR models for the same spectral data required
10 factors for CPF quantification and 15 for ALD quantifica-
tion. Requiring fewer factors by PLSR models indicates that
the PLSR algorithm is a more powerful technique for predic-
tion of pesticide concentration [27, 8, 36]. PLSR models devel-
oped with different number of factors exhibited similar perfor-
mance and predictability for predicting CPF and ALD concen-
tration (Table 3 and Figure 4). In PLSR models, the models for
CPF quantification applied to training and validation datasets
of SERS spectra yielded moderate r2 values (>0.850), lower er-
ror rates of RMSEC (1.030 mg/kg) and RMSEP (2.294 mg/kg),
and a linear regression slope in the range of ∼0.9. Likewise, the
PLSR calibration models developed with ALD-spiked samples
with lower concentrations than CPF samples showed equal pre-
dictive accuracy and acceptable sensitivity to the PLSR models
for CPF, with comparable r2 values, moderately low error rates,
and linear regression slopes slightly lower than 0.9 (Table 3 and
Figure 4). The PCR calibration models applied to the valida-
tion datasets of SERS spectral data yielded much less predict-
ing ability (r2=0.164 and RMSEP=5.514 mg/kg for CPF and
r2=0.199 and RMSEP=29.695 µg/kg for ALD) to quantify CPF
and ALD concentration, compared to MLR and PLSR mod-
els. In addition to some reasons described earlier, the poor per-
formance of the PCR models irrespective of the type of pesti-
cide and preprocessing method can be explained also by similar
spectral properties of the samples, poor repeatability of spectra,
and interference of pesticide Raman bands from other coextrac-
tants.

CPF and ALD concentrations predicted by the three chemo-
metric models found no statistically significant difference when
compared with actual values determined by standard wet-
chemical methods (p>0.01). The standard errors of paired dif-
ference between the predicted and reference values were com-
parable between MLR and PLSR models and higher in PCR
models for CPF and ALD quantification (Table 3). In the
Pearson’s correlation coefficient comparison, the predicted val-
ues by the MLR and PLSR models developed on SERS spec-
tra were highly correlated with reference values (r>0.925 for
CPF and r>0.904 for ALD), indicating equivalent results to the
chromatographic methods at the pesticide levels tested, while
those by PCR models were poorly correlated with the refer-
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ence values (r=0.405 for CPF and r=0.446 for ALD). RPD val-
ues calculated by standardizing RMSEP values against stan-
dard deviation of the reference values in the external valida-
tion dataset for SERS spectral data were 2.53 and 2.68 for
CPF and ALD in MLR models, respectively. Likewise, RPD
values of PLSR models showed greater than 2.3 for CPF and
ALD samples, while PCR models developed on SERS spec-
tral data of the pesticide samples did not exceed RPD values
of 2.0. The RPD results indicate that MLR and PLSR may
be semi-quantitative and effective for screening CPF and ALD
pesticide-contaminated feed samples.

Apparently, there have been little attempts to develop SERS
methods for detection of CPF and ALD residues in animal feed.
Our results of chemometric models for predicting the pesticide
concentration in animal feed are equivalent or even surpassing
those reported in previous studies using other sample matrices,
in terms of predictive accuracy and error rates. The findings and
implications from the present study clearly demonstrate the po-
tential feasibility of the SERS technique as more effective and
efficient analytical tool for CPF and ALD quantification in an-
imal feed than standard wet-chemical methods with respect to
cost-effectiveness, simplicity, and rapidness in analytical proce-
dure, environmental cleanness, general applicability, and rapid
growth in the pace of technical improvement.

4. Conclusions

The current research successfully demonstrated the poten-
tial feasibility of a SERS-based spectroscopic method, and also
its challenges, as a rapid, simple, and cost-effective analyti-
cal tool for early detection and screening of chlorpyrifos- and
aldicarb-contaminated animal feed. The selected chemometric
models exhibited a satisfactory predictive capacity and perfor-
mance on pesticide-spiked samples in qualitative and quantita-
tive analysis, which may help reduce significantly the risk of an-
imal feed hazard imposed by pesticide contamination, although
accurate quantitative determination of low-pesticide concentra-
tion samples is still challenging, and more simplified sample
preparation with minimum effort and low cost needs to be im-
plemented for on-site analysis. The SERS-based spectroscopic
method could offer critical advantages and benefits, with plenty
of information about samples, over conventional wet-chemical
methods for selected pesticide analysis, perhaps suitable for
rapid, real-time monitoring and onsite analysis of contaminated
feed samples. However, broader application of the SERS tech-
nique might be hindered by several technical difficulties and
constraints, including lack of stable Raman laser source, inter-
ference of biological fluorescence, insensitivity to a target an-
alyte in the low concentration range, expensive nanomaterials,
and poor repeatability and reproducibility of spectra induced
by instability of nanostructure and inconsistent concentration
of nanoparticles in different batches. Nevertheless, the SERS
spectroscopic method is promising if it can improve its predic-
tive capacity and applicability through adoption of new tech-
nologies and innovative approaches, such as development of
inexpensive laser source and signal detection system, simpli-
fication of data processing and interpretation, development of

new algorithms and statistical techniques for effective removal
of noise and redundant information, production of low-cost
nanoparticles, and development of highly efficient system com-
ponents. Therefore, the proposed SERS spectroscopic method
and its further modified version can be considered in the fu-
ture as a more powerful and economical analytical tool than
any other methods for CPF and ALD analysis in animal feed,
to improve the quality and safety of food and feed products and
thus protect human and animal health.
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Hernández-Borges, J. (2012). Sample-preparation methods for pesticide-
residue analysis in cereals and derivatives. TrAC Trends in Analytical
Chemistry, 38, 32-51. doi: 10.1016/j.trac.2012.04.010

[19] Huang, S., Hu, J., Liu, M., Wu, R., & Wang, X. (2017). Density Func-
tional Theory Calculation and Raman Spectroscopy Studies of Carbamate
Pesticides (in Chinese). Guang Pu Xue Yu Guang Pu Fen Xi, 37(3).

[20] Johnson, D. E. (1998). Discriminant analysis. In D. E. Johnson (Ed.),
Applied Multivariate Methods for Data Analyst (pp. 217-285). Duxbury
Press.

[21] Kan, C. A., & Meijer, G. A. L. (2007). The risk of contamination of food
with toxic substances present in animal feed. Animal Feed Science and
Technology, 133(1/2), 84-108. doi: 10.1016/j.anifeedsci.2006.08.005

[22] Kim, A., Barcelo, S. J., & Li, Z. (2014). SERS-based pesticide detec-
tion by using nanofinger sensors. Nanotechnology, 26(1), 015502. doi:
10.1088/0957-4484/26/1/015502

[23] Kim, J., Hwang, J., & Chung, H. (2008). Comparison of near-infrared and
Raman spectroscopy for on-line monitoring of etchant solutions directly
through a Teflon tube. Analytica Chimica Acta, 629(1-2), 119-127. doi:
10.1016/j.aca.2008.09.032

[24] Kos, G., Lohninger, H., Mizaikoff, B., & Krska, R. (2007). Optimisation
of a sample preparation procedure for the screening of fungal infection
and assessment of deoxynivalenol content in maize using mid-infrared at-
tenuated total reflection spectroscopy. Food Additives and Contaminants,
24(7), 721-729. doi: 10.1080/02652030601186111

[25] Lee, K-M., Armstrong, P. R., Thomasson, J. A., Sui, R., Casada, M.,
& Herrman, T. J. (2010). Development and Characterization of Food-
Grade Tracers for the Global Grain Tracing and Recall System. Jour-
nal of Agricultural and Food Chemistry, 58(20), 10945-10957. doi:
10.1021/jf101370k

[26] Lee, K-M., & Herrman, T. J. (2016). Determination and Prediction of
Fumonisin Contamination in Maize by Surface–Enhanced Raman Spec-

troscopy (SERS). Food and Bioprocess Technology, 9, 588-603. doi:
10.1007%2Fs11947-015-1654-1

[27] Lee, K-M., Herrman, T. J., Bisrat, Y., & Murray, S. C. (2014). Feasi-
bility of Surface-Enhanced Raman Spectroscopy for Rapid Detection of
Aflatoxins in Maize. Journal of Agricultural and Food Chemistry, 62(19),
4466-4474. doi: 10.1021/jf500854u

[28] Leeman, W. R., Van Den Berg, K. J., & Houben, G. F. (2007). Transfer
of chemicals from feed to animal products: The use of transfer factors
in risk assessment. Food Additives and Contaminants, 24(1), 1-13. doi:
10.1080/02652030600815512

[29] Liu, Y., & Liu, T. (2010). Determination of Pesticide Residues on the Sur-
face of Fruits Using Micro-Raman Spectroscopy. In D. Li, Y. Liu, & Y.
Chen (Eds.), Computer and Computing Technologies in Agriculture IV.
CCTA 2010. IFIP Advances in Information and Communication Technol-
ogy (Vol. 347, pp. 427-434). Springer. doi: 10.1007/978-3-642-18369-
0 50
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